- -

Photosensitised pyrimidine dimerisation in DNA

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photosensitised pyrimidine dimerisation in DNA

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bosca Mayans, Francisco es_ES
dc.contributor.author Lhiaubet, Virginie Lyria es_ES
dc.contributor.author Cuquerella Alabort, Maria Consuelo es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.date.accessioned 2016-04-12T08:56:50Z
dc.date.available 2016-04-12T08:56:50Z
dc.date.issued 2011
dc.identifier.issn 2041-6520
dc.identifier.uri http://hdl.handle.net/10251/62440
dc.description.abstract Triplet-mediated pyrimidine (Pyr) dimerisation is a key process in photochemical damage to DNA. It may occur in the presence of a photosensitiser, provided that a number of requirements are fulfilled, such as favourable intersystem crossing quantum yield and high triplet energy. The attention has been mainly focused on cyclobutane pyrimidine dimers, as they are by far the most relevant Pyr photoproducts obtained by sensitisation. The present perspective deals with the involved chemistry, not only in DNA but also in its simple building blocks. It also includes the photophysical characterisation of the Pyr triplet excited states, as well as a brief discussion of the theoretical aspects. es_ES
dc.description.sponsorship Financial support from the Spanish Government (CTQ2009-13699, CTQ2009-14196, JAE Doc fellowship for M. C. C. and Ramon y Cajal contract for V. L.-V.) and EU (CM0603) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject THYMINE DIMER FORMATION es_ES
dc.subject TRIPLET ENERGY-TRANSFER es_ES
dc.subject FROZEN AQUEOUS-SOLUTIONS es_ES
dc.subject NUCLEIC-ACID BASES es_ES
dc.subject UV-IRRADIATED DNA es_ES
dc.subject SPORE PHOTOPRODUCT es_ES
dc.subject EXCITED-STATE es_ES
dc.subject ELECTRON-TRANSFER es_ES
dc.subject ROOM-TEMPERATURE es_ES
dc.subject BIPYRIMIDINE PHOTOPRODUCTS es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Photosensitised pyrimidine dimerisation in DNA es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c1sc00088h
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-14196/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-13699/ES/MECANISMOS FOTOQUIMICOS DEL DAÑO AL ADN Y SU REPARACION. FOTOSENSIBILIZACION FRENTE A FOTOPROTECCION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CM0603/EU/Free Radicals in Chemical Biology (CHEMBIORADICAL)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Bosca Mayans, F.; Lhiaubet, VL.; Cuquerella Alabort, MC.; Miranda Alonso, MÁ. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science. 2(7):1219-1232. https://doi.org/10.1039/c1sc00088h es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c1sc00088h es_ES
dc.description.upvformatpinicio 1219 es_ES
dc.description.upvformatpfin 1232 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 192960 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references The Lancet Oncology. (2009). Beauty and the beast. The Lancet Oncology, 10(9), 835. doi:10.1016/s1470-2045(09)70243-8 es_ES
dc.description.references Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37), 13765-13770. doi:10.1073/pnas.0604213103 es_ES
dc.description.references Setlow, R. B., Grist, E., Thompson, K., & Woodhead, A. D. (1993). Wavelengths effective in induction of malignant melanoma. Proceedings of the National Academy of Sciences, 90(14), 6666-6670. doi:10.1073/pnas.90.14.6666 es_ES
dc.description.references Rochette, P. J. (2003). UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells. Nucleic Acids Research, 31(11), 2786-2794. doi:10.1093/nar/gkg402 es_ES
dc.description.references Mitchell, D. L., Fernandez, A. A., Nairn, R. S., Garcia, R., Paniker, L., Trono, D., … Gimenez-Conti, I. (2010). Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model. Proceedings of the National Academy of Sciences, 107(20), 9329-9334. doi:10.1073/pnas.1000324107 es_ES
dc.description.references Douki, T., Reynaud-Angelin, A., Cadet, J., & Sage, E. (2003). Bipyrimidine Photoproducts Rather than Oxidative Lesions Are the Main Type of DNA Damage Involved in the Genotoxic Effect of Solar UVA Radiation†. Biochemistry, 42(30), 9221-9226. doi:10.1021/bi034593c es_ES
dc.description.references Young, A. R., Potten, C. S., Nikaido, O., Parsons, P. G., Boenders, J., Ramsden, J. M., & Chadwick, C. A. (1998). Human Melanocytes and Keratinocytes Exposed to UVB or UVA In Vivo Show Comparable Levels of Thymine Dimers. Journal of Investigative Dermatology, 111(6), 936-940. doi:10.1046/j.1523-1747.1998.00435.x es_ES
dc.description.references Cooke, M. S., Evans, M. D., Patel, K., Barnard, A., Lunec, J., Burd, R. M., & Hutchinson, P. E. (2001). Induction and Excretion of Ultraviolet-Induced 8-Oxo-2′-deoxyguanosine and Thymine Dimers In Vivo: Implications for PUVA. Journal of Investigative Dermatology, 116(2), 281-285. doi:10.1046/j.1523-1747.2001.01251.x es_ES
dc.description.references Mouret, S., Philippe, C., Gracia-Chantegrel, J., Banyasz, A., Karpati, S., Markovitsi, D., & Douki, T. (2010). UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism? Organic & Biomolecular Chemistry, 8(7), 1706. doi:10.1039/b924712b es_ES
dc.description.references Jiang, Y., Rabbi, M., Kim, M., Ke, C., Lee, W., Clark, R. L., … Marszalek, P. E. (2009). UVA Generates Pyrimidine Dimers in DNA Directly. Biophysical Journal, 96(3), 1151-1158. doi:10.1016/j.bpj.2008.10.030 es_ES
dc.description.references Tyrrell, R. M., & Keyse, S. M. (1990). New trends in photobiology the interaction of UVA radiation with cultured cells. Journal of Photochemistry and Photobiology B: Biology, 4(4), 349-361. doi:10.1016/1011-1344(90)85014-n es_ES
dc.description.references Besaratinia, A., Synold, T. W., Chen, H.-H., Chang, C., Xi, B., Riggs, A. D., & Pfeifer, G. P. (2005). DNA lesions induced by UV A1 and B radiation in human cells: Comparative analyses in the overall genome and in the p53 tumor suppressor gene. Proceedings of the National Academy of Sciences, 102(29), 10058-10063. doi:10.1073/pnas.0502311102 es_ES
dc.description.references Kuluncsics, Z., Perdiz, D., Brulay, E., Muel, B., & Sage, E. (1999). Wavelength dependence of ultraviolet-induced DNA damage distribution: Involvement of direct or indirect mechanisms and possible artefacts. Journal of Photochemistry and Photobiology B: Biology, 49(1), 71-80. doi:10.1016/s1011-1344(99)00034-2 es_ES
dc.description.references Cadet, J., Courdavault, S., Ravanat, J.-L., & Douki, T. (2005). UVB and UVA radiation-mediated damage to isolated and cellular DNA. Pure and Applied Chemistry, 77(6), 947-961. doi:10.1351/pac200577060947 es_ES
dc.description.references Costalat, R., Blais, J., Ballini, J.-P., Moysan, A., Cadet, J., Chalvet, O., & Vigny, P. (1990). FORMATION OF CYCLOBUTANE THYMINE DIMERS PHOTOSENSITIZED BY PYRIDOPSORALENS: A TRIPLET-TRIPLET ENERGY TRANSFER MECHANISM. Photochemistry and Photobiology, 51(3), 255-262. doi:10.1111/j.1751-1097.1990.tb01709.x es_ES
dc.description.references Moysan, A., Viari, A., Vigny, P., Voituriez, L., Cadet, J., Moustacchi, E., & Sage, E. (1991). Formation of cyclobutane thymine dimers photosensitized by pyridopsoralens: quantitative and qualitative distribution within DNA. Biochemistry, 30(29), 7080-7088. doi:10.1021/bi00243a007 es_ES
dc.description.references Stern, R. S., Liebman, E. J., & Väkevä, L. (1998). Oral Psoralen and Ultraviolet-A Light (PUVA) Treatment of Psoriasis and Persistent Risk of Nonmelanoma Skin Cancer. JNCI: Journal of the National Cancer Institute, 90(17), 1278-1284. doi:10.1093/jnci/90.17.1278 es_ES
dc.description.references Young, A. R. (1990). Photocarcinogenicity of psoralens used in PUVA treatment: Present status in mouse and man. Journal of Photochemistry and Photobiology B: Biology, 6(1-2), 237-247. doi:10.1016/1011-1344(90)85093-c es_ES
dc.description.references Spratt, T. E., Schultz, S. S., Levy, D. E., Chen, D., Schlüter, G., & Williams, G. M. (1999). Different Mechanisms for the Photoinduced Production of Oxidative DNA Damage by Fluoroquinolones Differing in Photostability. Chemical Research in Toxicology, 12(9), 809-815. doi:10.1021/tx980224j es_ES
dc.description.references Sauvaigo, S., Douki, T., Odin, F., Caillat, S., Ravanat, J.-L., & Cadet, J. (2001). Analysis of Fluoroquinolone-mediated Photosensitization of 2′-Deoxyguanosine, Calf Thymus and Cellular DNA: Determination of Type-I, Type-II and Triplet–Triplet Energy Transfer Mechanism Contribution¶. Photochemistry and Photobiology, 73(3), 230. doi:10.1562/0031-8655(2001)073<0230:aofmpo>2.0.co;2 es_ES
dc.description.references Cuquerella, M. C., Boscá, F., Miranda, M. A., Belvedere, A., Catalfo, A., & de Guidi, G. (2003). Photochemical Properties of Ofloxacin Involved in Oxidative DNA Damage:  A Comparison with Rufloxacin. Chemical Research in Toxicology, 16(4), 562-570. doi:10.1021/tx034006o es_ES
dc.description.references Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2009). Photosensitized DNA Damage: The Case of Fluoroquinolones. Photochemistry and Photobiology, 85(4), 861-868. doi:10.1111/j.1751-1097.2009.00548.x es_ES
dc.description.references Mäkinen, M., Forbes, P. D., & Stenbäck, F. (1997). Quinolone antibacterials: A new class of photochemical carcinogens. Journal of Photochemistry and Photobiology B: Biology, 37(3), 182-187. doi:10.1016/s1011-1344(96)07425-8 es_ES
dc.description.references Klecak, G., Urbach, F., & Urwyler, H. (1997). Fluoroquinolone antibacterials enhance UVA-induced skin tumors. Journal of Photochemistry and Photobiology B: Biology, 37(3), 174-181. doi:10.1016/s1011-1344(96)07424-6 es_ES
dc.description.references Johnson, B. E., Gibbs, N. K., & Ferguson, J. (1997). Quinolone antibiotic with potential to photosensitize skin tumorigenesis. Journal of Photochemistry and Photobiology B: Biology, 37(3), 171-173. doi:10.1016/s1011-1344(96)07423-4 es_ES
dc.description.references Itoh, T., Miyauchi-Hashimoto, H., Sugihara, A., Tanaka, K., & Horio, T. (2005). The Photocarcinogenesis of Antibiotic Lomefloxacin and UVA Radiation Is Enhanced in Xeroderma Pigmentosum Group A Gene-Deficient Mice. Journal of Investigative Dermatology, 125(3), 554-559. doi:10.1111/j.0022-202x.2005.23862.x es_ES
dc.description.references Sandros, K., Haglid, F., Ryhage, R., Ryhage, R., & Stevens, R. (1964). Transfer of Triplet State Energy in Fluid Solutions. III. Reversible Energy Transfer. Acta Chemica Scandinavica, 18, 2355-2374. doi:10.3891/acta.chem.scand.18-2355 es_ES
dc.description.references Encinas, S., Belmadoui, N., Climent, M. J., Gil, S., & Miranda, M. A. (2004). Photosensitization of Thymine Nucleobase by Benzophenone Derivatives as Models for Photoinduced DNA Damage:  Paterno−Büchi vs Energy and Electron Transfer Processes. Chemical Research in Toxicology, 17(7), 857-862. doi:10.1021/tx034249g es_ES
dc.description.references Morrison, H., & Kleopfer, R. (1968). Organic photochemistry. VIII. Solvent effects on liquid-phase photodimerization of dimethylthymine. Journal of the American Chemical Society, 90(18), 5037-5038. doi:10.1021/ja01020a055 es_ES
dc.description.references Wagner, P. J., & Bucheck, D. J. (1970). Photodimerization of thymine and uracil in acetonitrile. Journal of the American Chemical Society, 92(1), 181-185. doi:10.1021/ja00704a030 es_ES
dc.description.references Cadet, J., Voituriez, L., Hruska, F. E., Kan, L.-S., Leeuw, F. A. A. M. de, & Altona, C. (1985). Characterization of thymidine ultraviolet photoproducts. Cyclobutane dimers and 5,6-dihydrothymidines. Canadian Journal of Chemistry, 63(11), 2861-2868. doi:10.1139/v85-477 es_ES
dc.description.references VARGHESE, A. J. (1972). ACETONE-SENSITIZED DIMERIZATION OF CYTOSINE DERIVATIVES. Photochemistry and Photobiology, 15(2), 113-118. doi:10.1111/j.1751-1097.1972.tb06232.x es_ES
dc.description.references LAMOLA, A. A. (1968). EXCITED STATE PRECURSORS OF THYMINE PHOTODIMERS. Photochemistry and Photobiology, 7(6), 619-632. doi:10.1111/j.1751-1097.1968.tb08044.x es_ES
dc.description.references Greenstock, C. L., & Johns, H. E. (1968). Photosensitized dimerization of pyrimidines. Biochemical and Biophysical Research Communications, 30(1), 21-27. doi:10.1016/0006-291x(68)90706-7 es_ES
dc.description.references Aliwell, S. R., Martincigh, B. S., & Salter, L. F. (1993). Para-aminobenzoic acid-photosensitized dimerization of thymine I. In DNA-related model systems. Journal of Photochemistry and Photobiology A: Chemistry, 71(2), 137-146. doi:10.1016/1010-6030(93)85065-g es_ES
dc.description.references Kleopfer, R., & Morrison, H. (1972). Organic photochemistry. XVII. Solution-phase photodimerization of dimethylthymine. Journal of the American Chemical Society, 94(1), 255-264. doi:10.1021/ja00756a045 es_ES
dc.description.references Chouini-Lalanne, N., Defais, M., & Paillous, N. (1998). Nonsteroidal antiinflammatory drug-photosensitized formation of pyrimidine dimer in DNA. Biochemical Pharmacology, 55(4), 441-446. doi:10.1016/s0006-2952(97)00511-x es_ES
dc.description.references Meistrich, M. L., & Lamola, A. A. (1972). Triplet-state sensitization of thymine photodimerization in bacteriophage T4. Journal of Molecular Biology, 66(1), 83-95. doi:10.1016/s0022-2836(72)80007-x es_ES
dc.description.references Lamola, A. A., Guéron, M., Yamane, T., Eisinger, J., & Shulman, R. G. (1967). Triplet State of DNA. The Journal of Chemical Physics, 47(7), 2210-2217. doi:10.1063/1.1703293 es_ES
dc.description.references HøNNÅS, P. I., & STEEN, H. B. (1970). X-RAY- AND U.V.-INDUCED EXCITATION OF ADENINE, THYMINE AND THE RELATED NUCLEOSIDES AND NUCLEOTIDES IN SOLUTION AT 77°K. Photochemistry and Photobiology, 11(2), 67-76. doi:10.1111/j.1751-1097.1970.tb05972.x es_ES
dc.description.references Wilucki, I. vo., Matthäs, H., & Krauch, C. H. (1967). PHOTOSENSIBILISIERTE CYCLODIMERISATION VON THYMIN IN LÖSUNG. Photochemistry and Photobiology, 6(7), 497-500. doi:10.1111/j.1751-1097.1967.tb08750.x es_ES
dc.description.references Elad, D., Krüger, C., & Schmidt, G. M. J. (1967). THE PHOTOSENSITIZED SOLUTION DIMERIZATTION OF DIMETHYLURACIL AND DIMETHYLTHYMINE. FOUR PHOTODIMERS OF DIMETHYLURACIL. Photochemistry and Photobiology, 6(7), 495-496. doi:10.1111/j.1751-1097.1967.tb08749.x es_ES
dc.description.references JENNINGS, B. H., PASTRA, S.-C., & WELLINGTON, J. L. (1970). PHOTOSENSITIZED DIMERIZATION OF THYMINE. Photochemistry and Photobiology, 11(4), 215-226. doi:10.1111/j.1751-1097.1970.tb05991.x es_ES
dc.description.references Ben-Hur, E., Elad, D., & Ben-Ishai, R. (1967). The photosensitized dimerization of thymidine in solution. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 149(2), 355-360. doi:10.1016/0005-2787(67)90163-3 es_ES
dc.description.references Delatour, T., Douki, T., D’Ham, C., & Cadet, J. (1998). Photosensitization of thymine nucleobase by benzophenone through energy transfer, hydrogen abstraction and one-electron oxidation. Journal of Photochemistry and Photobiology B: Biology, 44(3), 191-198. doi:10.1016/s1011-1344(98)00142-0 es_ES
dc.description.references Douki, T., Court, M., & Cadet, J. (2000). Electrospray–mass spectrometry characterization and measurement of far-UV-induced thymine photoproducts. Journal of Photochemistry and Photobiology B: Biology, 54(2-3), 145-154. doi:10.1016/s1011-1344(00)00009-9 es_ES
dc.description.references Belmadoui, N., Encinas, S., Climent, M. J., Gil, S., & Miranda, M. A. (2006). Intramolecular Interactions in the Triplet Excited States of Benzophenone–Thymine Dyads. Chemistry - A European Journal, 12(2), 553-561. doi:10.1002/chem.200500345 es_ES
dc.description.references Prakash, G., & Falvey, D. E. (1995). Model studies of the (6-4) photoproduct DNA photolyase: Synthesis and photosensitized splitting of a thymine-5,6-oxetane. Journal of the American Chemical Society, 117(45), 11375-11376. doi:10.1021/ja00150a050 es_ES
dc.description.references Nakatani, K., Yoshida, T., & Saito, I. (2002). Photochemistry of Benzophenone Immobilized in a Major Groove of DNA:  Formation of Thermally Reversible Interstrand Cross-link. Journal of the American Chemical Society, 124(10), 2118-2119. doi:10.1021/ja017611r es_ES
dc.description.references Varghese, A. J. (1975). PHOTOCYCLOADDITION OF ACETONE TO URACIL AND CYTOSINE. Photochemistry and Photobiology, 21(3), 147-151. doi:10.1111/j.1751-1097.1975.tb06644.x es_ES
dc.description.references Trzcionka, J., Lhiaubet-Vallet, V., Paris, C., Belmadoui, N., Climent, M. J., & Miranda, M. A. (2007). Model Studies on a Carprofen Derivative as Dual Photosensitizer for Thymine Dimerization and (6–4) Photoproduct Repair. ChemBioChem, 8(4), 402-407. doi:10.1002/cbic.200600394 es_ES
dc.description.references Lhiaubet-Vallet, V., Encinas, S., & Miranda, M. A. (2005). Excited State Enantiodifferentiating Interactions between a Chiral Benzophenone Derivative and Nucleosides. Journal of the American Chemical Society, 127(37), 12774-12775. doi:10.1021/ja053518h es_ES
dc.description.references Umlas, M. E., Franklin, W. A., Chan, G. L., & Haseltine, W. A. (1985). ULTRAVIOLET LIGHT IRRADIATION OF DEFINED-SEQUENCE DNA UNDER CONDITIONS OF CHEMICAL PHOTOSENSITIZATION. Photochemistry and Photobiology, 42(3), 265-273. doi:10.1111/j.1751-1097.1985.tb08941.x es_ES
dc.description.references Liu, F.-T., & Yang, N. C. (1978). Photochemistry of cytosine derivatives. 1. Photochemistry of thymidylyl-(3’ →5’)-deoxycytidine. Biochemistry, 17(23), 4865-4876. doi:10.1021/bi00616a003 es_ES
dc.description.references Mu, W., Han, Q., Luo, Z., & Wang, Y. (2006). Production of cis–syn thymine–thymine cyclobutane dimer oligonucleotide in the presence of acetone photosensitizer. Analytical Biochemistry, 353(1), 117-123. doi:10.1016/j.ab.2006.03.007 es_ES
dc.description.references Kaneko, M., Matsuyama, A., & Nagata, C. (1979). Photosensitized formation of thymine dimers in DNA by tyramine, tyrosine and tyrosine containing peptides. Nucleic Acids Research, 6(3), 1177-1187. doi:10.1093/nar/6.3.1177 es_ES
dc.description.references Logue, M. W., & Leonard, N. J. (1972). Synthetic spectroscopic models related to coenzymes and base pairs. IX. «Abbreviated» dinucleosides of thymidine and deoxyuridine and their photoproducts. Journal of the American Chemical Society, 94(8), 2842-2846. doi:10.1021/ja00763a050 es_ES
dc.description.references KONING, T. M. G., SOEST, J. J. G., & KAPTEIN, R. (1991). NMR studies of bipyrimidine cyclobutane photodimers. European Journal of Biochemistry, 195(1), 29-40. doi:10.1111/j.1432-1033.1991.tb15672.x es_ES
dc.description.references Leonard, N. J., McCredie, R. S., Logue, M. W., & Cundall, R. L. (1973). Synthetic spectroscopic models related to coenzymes and base pairs. XI. Solid state ultraviolet irradiation of 1,1’-trimethylenebisthymine and photosensitized irradiation of 1,1’-polymethylenebisthymines. Journal of the American Chemical Society, 95(7), 2320-2324. doi:10.1021/ja00788a036 es_ES
dc.description.references Rahn, R. O., & Landry, L. C. (1971). Pyrimidine dimer formation in poly (d-dT) and apurinic acid. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 247(2), 197-206. doi:10.1016/0005-2787(71)90670-8 es_ES
dc.description.references Hosszu, J. L., & Rahn, R. O. (1967). Thymine dimer formation in DNA between 25°C and 100°C. Biochemical and Biophysical Research Communications, 29(3), 327-330. doi:10.1016/0006-291x(67)90457-3 es_ES
dc.description.references Setlow, R. B., & Carrier, W. L. (1966). Pyrimidine dimers in ultraviolet-irradiated DNA’s. Journal of Molecular Biology, 17(1), 237-254. doi:10.1016/s0022-2836(66)80105-5 es_ES
dc.description.references Lhiaubet, V., Paillous, N., & Chouini-Lalanne, N. (2001). Comparison of DNA Damage Photoinduced by Ketoprofen, Fenofibric Acid and Benzophenone via Electron and Energy Transfer¶. Photochemistry and Photobiology, 74(5), 670. doi:10.1562/0031-8655(2001)074<0670:coddpb>2.0.co;2 es_ES
dc.description.references Lhiaubet-Vallet, V., Trzcionka, J., Encinas, S., Miranda, M. A., & Chouini-Lalanne, N. (2004). The Triplet State of aN-Phenylphthalimidine with High Intersystem Crossing Efficiency:  Characterization by Transient Absorption Spectroscopy and DNA Sensitization Properties. The Journal of Physical Chemistry B, 108(37), 14148-14153. doi:10.1021/jp0498926 es_ES
dc.description.references Trzcionka, J., Lhiaubet-Vallet, V., & Chouini-Lalanne, N. (2004). DNA photosensitization by indoprofen ? is DNA damage photoinduced by indoprofen or by its photoproducts? Photochemical & Photobiological Sciences, 3(2), 226. doi:10.1039/b307719e es_ES
dc.description.references Bosca, F., Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., & Miranda, M. A. (2006). The Triplet Energy of Thymine in DNA. Journal of the American Chemical Society, 128(19), 6318-6319. doi:10.1021/ja060651g es_ES
dc.description.references Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., Bosca, F., & Miranda, M. A. (2007). Triplet Excited Fluoroquinolones as Mediators for Thymine Cyclobutane Dimer Formation in DNA. The Journal of Physical Chemistry B, 111(25), 7409-7414. doi:10.1021/jp070167f es_ES
dc.description.references Marrot, L., Belaïdi, J. P., Jones, C., Perez, P., Meunier, J. R., Riou, L., & Sarasin, A. (2003). Molecular Responses to Photogenotoxic Stress Induced by the Antibiotic Lomefloxacin in Human Skin Cells: From DNA Damage to Apoptosis. Journal of Investigative Dermatology, 121(3), 596-606. doi:10.1046/j.1523-1747.2003.12422.x es_ES
dc.description.references Lamola, A. A. (1970). Triplet photosensitization and the photobiology of thymine dimers in DNA. Pure and Applied Chemistry, 24(3), 599-610. doi:10.1351/pac197024030599 es_ES
dc.description.references Lamola, A. A., & Yamane, T. (1967). Sensitized photodimerization of thymine in DNA. Proceedings of the National Academy of Sciences, 58(2), 443-446. doi:10.1073/pnas.58.2.443 es_ES
dc.description.references Patrick, M. H., & Snow, J. M. (1977). STUDIES ON THYMINE-DERIVED UV PHOTO-PRODUCTS IN DNA—II. A COMPARATIVE ANALYSIS OF DAMAGE CAUSED BY 254 NM IRRADIATION AND TRIPLET-STATE PHOTOSENSITIZATION. Photochemistry and Photobiology, 25(4), 373-384. doi:10.1111/j.1751-1097.1977.tb07356.x es_ES
dc.description.references Guillo, L., Blais, J., Vigny, P., & Spassky, A. (1995). SELECTIVE DNA THYMINE DIMERIZATION DURING UVA IRRADIATION IN THE PRESENCE OF A SATURATED PYRIDOPSORALEN. Photochemistry and Photobiology, 61(4), 331-335. doi:10.1111/j.1751-1097.1995.tb08617.x es_ES
dc.description.references Robinson, K. S., Traynor, N. J., Moseley, H., Ferguson, J., & Woods, J. A. (2010). Cyclobutane pyrimidine dimers are photosensitised by carprofen plus UVA in human HaCaT cells. Toxicology in Vitro, 24(4), 1126-1132. doi:10.1016/j.tiv.2010.03.007 es_ES
dc.description.references Marrot, L., & Meunier, J.-R. (2008). Skin DNA photodamage and its biological consequences. Journal of the American Academy of Dermatology, 58(5), S139-S148. doi:10.1016/j.jaad.2007.12.007 es_ES
dc.description.references Walrant, P., Santos, R., & Charlier, M. (1976). ROLE OF COMPLEX FORMATION IN THE PHOTOSENSITIZED DEGRADATION OF DNA INDUCED BY N‘-FORMYLKYNURENINE. Photochemistry and Photobiology, 24(1), 13-19. doi:10.1111/j.1751-1097.1976.tb06792.x es_ES
dc.description.references Bolton, K., Martincigh, B. S., & Salter, L. F. (1992). The potential carcinogenic effect of Uvinul DS49 — a common UV absorber used in cosmetics. Journal of Photochemistry and Photobiology A: Chemistry, 63(2), 241-248. doi:10.1016/1010-6030(92)85142-h es_ES
dc.description.references Aliwell, S. R., Martincigh, B. S., & Salter, L. F. (1993). Para-aminobenzoic acid-photosensitized dimerization of thymine II. In pUC19 plasmid DNA. Journal of Photochemistry and Photobiology A: Chemistry, 71(2), 147-153. doi:10.1016/1010-6030(93)85066-h es_ES
dc.description.references Desnous, C., Guillaume, D., & Clivio, P. (2010). Spore Photoproduct: A Key to Bacterial Eternal Life. Chemical Reviews, 110(3), 1213-1232. doi:10.1021/cr0781972 es_ES
dc.description.references Donnellan, J. E., & Setlow, R. B. (1965). Thymine Photoproducts but not Thymine Dimers Found in Ultraviolet-Irradiated Bacterial Spores. Science, 149(3681), 308-310. doi:10.1126/science.149.3681.308 es_ES
dc.description.references Mantel, C., Chandor, A., Gasparutto, D., Douki, T., Atta, M., Fontecave, M., … Bardet, M. (2008). Combined NMR and DFT Studies for the Absolute Configuration Elucidation of the Spore Photoproduct, a UV-Induced DNA Lesion. Journal of the American Chemical Society, 130(50), 16978-16984. doi:10.1021/ja805032r es_ES
dc.description.references Douki, T., Setlow, B., & Setlow, P. (2005). Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species. Photochemical & Photobiological Sciences, 4(8), 591. doi:10.1039/b503771a es_ES
dc.description.references Douki, T. (2003). Inter-strand photoproducts are produced in high yield within A-DNA exposed to UVC radiation. Nucleic Acids Research, 31(12), 3134-3142. doi:10.1093/nar/gkg408 es_ES
dc.description.references Nicholson, W. L., Setlow, B., & Setlow, P. (1991). Ultraviolet irradiation of DNA complexed with alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers. Proceedings of the National Academy of Sciences, 88(19), 8288-8292. doi:10.1073/pnas.88.19.8288 es_ES
dc.description.references Rahn, R. O., & Hosszu, J. L. (1969). Influence of relative humidity on the photochemistry of DNA films. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 190(1), 126-131. doi:10.1016/0005-2787(69)90161-0 es_ES
dc.description.references Douki, T., & Cadet, J. (2003). Formation of the spore photoproduct and other dimeric lesions between adjacent pyrimidines in UVC-irradiated dry DNA. Photochemical & Photobiological Sciences, 2(4), 433. doi:10.1039/b300173c es_ES
dc.description.references Varghese, A. J. (1970). Photochemistry of thymidine in ice. Biochemistry, 9(24), 4781-4787. doi:10.1021/bi00826a023 es_ES
dc.description.references GROMOVA E. BALANZAT B. GERVAIS R. N, M. (1998). The direct effect of heavy ions and electrons on thymidine in the solid state. International Journal of Radiation Biology, 74(1), 81-97. doi:10.1080/095530098141753 es_ES
dc.description.references Shaw, A. A., & Cadet, J. (1990). Radical combination processes under the direct effects of gamma radiation on thymidine. Journal of the Chemical Society, Perkin Transactions 2, (12), 2063. doi:10.1039/p29900002063 es_ES
dc.description.references Nguyen, M. T., Zhang, R., Nam, P.-C., & Ceulemans, A. (2004). Singlet−Triplet Energy Gaps of Gas-Phase RNA and DNA Bases. A Quantum Chemical Study. The Journal of Physical Chemistry A, 108(31), 6554-6561. doi:10.1021/jp0491156 es_ES
dc.description.references Etinski, M., Fleig, T., & Marian, C. M. (2009). Intersystem Crossing and Characterization of Dark States in the Pyrimidine Nucleobases Uracil, Thymine, and 1-Methylthymine†. The Journal of Physical Chemistry A, 113(43), 11809-11816. doi:10.1021/jp902944a es_ES
dc.description.references Serrano-Pérez, J. J., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2007). On the Intrinsic Population of the Lowest Triplet State of Thymine. The Journal of Physical Chemistry B, 111(41), 11880-11883. doi:10.1021/jp0765446 es_ES
dc.description.references Etinski, M., & Marian, C. M. (2010). Ab initio investigation of the methylation and hydration effects on the electronic spectra of uracil and thymine. Physical Chemistry Chemical Physics, 12(19), 4915. doi:10.1039/b925677f es_ES
dc.description.references Merchán, M., Serrano-Andrés, L., Robb, M. A., & Blancafort, L. (2005). Triplet-State Formation along the Ultrafast Decay of Excited Singlet Cytosine. Journal of the American Chemical Society, 127(6), 1820-1825. doi:10.1021/ja044371h es_ES
dc.description.references Zhang, R. B., & Eriksson, L. A. (2006). A Triplet Mechanism for the Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA. The Journal of Physical Chemistry B, 110(14), 7556-7562. doi:10.1021/jp060196a es_ES
dc.description.references Climent, T., González-Ramírez, I., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2010). Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State. The Journal of Physical Chemistry Letters, 1(14), 2072-2076. doi:10.1021/jz100601p es_ES
dc.description.references Roca-Sanjuán, D., Olaso-González, G., González-Ramírez, I., Serrano-Andrés, L., & Merchán, M. (2008). Molecular Basis of DNA Photodimerization: Intrinsic Production of Cyclobutane Cytosine Dimers. Journal of the American Chemical Society, 130(32), 10768-10779. doi:10.1021/ja803068n es_ES
dc.description.references Abouaf, R., Pommier, J., Dunet, H., Quan, P., Nam, P.-C., & Nguyen, M. T. (2004). The triplet state of cytosine and its derivatives: Electron impact and quantum chemical study. The Journal of Chemical Physics, 121(23), 11668-11674. doi:10.1063/1.1812533 es_ES
dc.description.references González-Luque, R., Climent, T., González-Ramírez, I., Merchán, M., & Serrano-Andrés, L. (2010). Singlet−Triplet States Interaction Regions in DNA/RNA Nucleobase Hypersurfaces. Journal of Chemical Theory and Computation, 6(7), 2103-2114. doi:10.1021/ct100164m es_ES
dc.description.references Fleig, T., Knecht, S., & Hättig, C. (2007). Quantum-Chemical Investigation of the Structures and Electronic Spectra of the Nucleic Acid Bases at the Coupled Cluster CC2 Level. The Journal of Physical Chemistry A, 111(25), 5482-5491. doi:10.1021/jp0669409 es_ES
dc.description.references Climent, T., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2007). On the intrinsic population of the lowest triplet state of uracil. Chemical Physics Letters, 441(4-6), 327-331. doi:10.1016/j.cplett.2007.05.040 es_ES
dc.description.references Rasmussen, A. M., Lind, M. C., Kim, S., & Schaefer, H. F. (2010). Hydration of the Lowest Triplet States of the DNA/RNA Pyrimidines. Journal of Chemical Theory and Computation, 6(3), 930-939. doi:10.1021/ct900478c es_ES
dc.description.references Boggio-Pasqua, M., Groenhof, G., Schäfer, L. V., Grubmüller, H., & Robb, M. A. (2007). Ultrafast Deactivation Channel for Thymine Dimerization. Journal of the American Chemical Society, 129(36), 10996-10997. doi:10.1021/ja073628j es_ES
dc.description.references Merchán, M., González-Luque, R., Climent, T., Serrano-Andrés, L., Rodríguez, E., Reguero, M., & Peláez, D. (2006). Unified Model for the Ultrafast Decay of Pyrimidine Nucleobases. The Journal of Physical Chemistry B, 110(51), 26471-26476. doi:10.1021/jp066874a es_ES
dc.description.references Durbeej, B., & Eriksson, L. A. (2002). Reaction mechanism of thymine dimer formation in DNA induced by UV light. Journal of Photochemistry and Photobiology A: Chemistry, 152(1-3), 95-101. doi:10.1016/s1010-6030(02)00180-6 es_ES
dc.description.references Serrano-Pérez, J. J., González-Ramírez, I., Coto, P. B., Merchán, M., & Serrano-Andrés, L. (2008). Theoretical Insight into the Intrinsic Ultrafast Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA: Thymine versus Cytosine. The Journal of Physical Chemistry B, 112(45), 14096-14098. doi:10.1021/jp806794x es_ES
dc.description.references Blancafort, L., & Migani, A. (2007). Modeling Thymine Photodimerizations in DNA:  Mechanism and Correlation Diagrams. Journal of the American Chemical Society, 129(47), 14540-14541. doi:10.1021/ja074734o es_ES
dc.description.references Rahn, R. O., Shulman, R. G., & Longworth, J. W. (1965). The UV-induced triplet state in DNA. Proceedings of the National Academy of Sciences, 53(5), 893-896. doi:10.1073/pnas.53.5.893 es_ES
dc.description.references Bersohn, R., & Isenberg, I. (1963). On the phosphorescence of DNA. Biochemical and Biophysical Research Communications, 13(3), 205-208. doi:10.1016/0006-291x(63)90282-1 es_ES
dc.description.references Bersohn, R., & Isenberg, I. (1964). Phosphorescence in Nucleotides and Nucleic Acids. The Journal of Chemical Physics, 40(11), 3175-3180. doi:10.1063/1.1724980 es_ES
dc.description.references Helene, C. (1966). Triplet-triplet energy transfer between nucleic acids derivatives in frozen aqueous solutions. Biochemical and Biophysical Research Communications, 22(3), 237-242. doi:10.1016/0006-291x(66)90471-2 es_ES
dc.description.references Rahn, R. O., Shulman, R. G., & Longworth, J. W. (1966). Phosphorescence and Electron Spin Resonance Studies of the uv‐Excited Triplet State of DNA. The Journal of Chemical Physics, 45(8), 2955-2965. doi:10.1063/1.1728051 es_ES
dc.description.references Eisinger, J., & Shulman, R. G. (1968). Excited Electronic States of DNA. Science, 161(3848), 1311-1319. doi:10.1126/science.161.3848.1311 es_ES
dc.description.references Montenay-Garestier, T., & Helene, C. (1970). Interactions between cytidine and its cation in polycytidylic acid, cytidylyl-3’-cytidine, and cytidine aggregates. Biochemistry, 9(14), 2865-2870. doi:10.1021/bi00816a017 es_ES
dc.description.references Görner, H. (1990). Phosphorescence of nucleic acids and DNA components at 77 K. Journal of Photochemistry and Photobiology B: Biology, 5(3-4), 359-377. doi:10.1016/1011-1344(90)85051-w es_ES
dc.description.references KLEINWÄCHTER, V., DROBNIK, J., & AUGENSTEIN, L. (1968). EMISSION SPECTRA FROM SYNTHETIC POLYNUCLEOTIDES AND DEOXYRIBONUCLEIC ACID IN AQUEOUS SOLUTIONS. Photochemistry and Photobiology, 7(5), 485-497. doi:10.1111/j.1751-1097.1968.tb07409.x es_ES
dc.description.references Aaron, J. J., Spann, W. J., & Winefordner, J. D. (1973). Quantitative phosphorescence study of interactions of cytosine and cytidine and its nucleotides in frozen aqueous solution☆Evidence for anomalous heavy-atom effect. Talanta, 20(9), 855-865. doi:10.1016/0039-9140(73)80201-2 es_ES
dc.description.references Guéron, M., Eisinger, J., & Shulman, R. G. (1967). Excited States of Nucleotides and Singlet Energy Transfer in Polynucleotides. The Journal of Chemical Physics, 47(10), 4077-4091. doi:10.1063/1.1701580 es_ES
dc.description.references Isenberg, I., Rosenbluth, R., & Baird, S. L. (1967). Comparative Phosphorescence Quenching of DNA’s of Different Composition. Biophysical Journal, 7(4), 365-373. doi:10.1016/s0006-3495(67)86594-9 es_ES
dc.description.references Hélène, C., & Montenay-Garestier, T. (1968). Excitation energy transfer in molecular aggregates of nucleic acid derivatives in frozen aqueous solutions. Chemical Physics Letters, 2(1), 25-28. doi:10.1016/0009-2614(68)80137-x es_ES
dc.description.references Eisinger, J., & Shulman, R. G. (1967). Energy transfer in poly dAT. Journal of Molecular Biology, 28(3), 445-449. doi:10.1016/s0022-2836(67)80093-7 es_ES
dc.description.references Becker, R. S., & Kogan, G. (1980). PHOTOPHYSICAL PROPERTIES OF NUCLEIC ACID COMPONENTS—1. THE PYRIMIDINES: THYMINE, URACIL, N, N-DIMETHYL DERIVATIVES AND THYMIDINE. Photochemistry and Photobiology, 31(1), 5-13. doi:10.1111/j.1751-1097.1980.tb03675.x es_ES
dc.description.references Salet, C., Bensasson, R., & Becker, R. S. (1979). TRIPLET EXCITED STATES OF PYRIMIDINE NUCLEOSIDES AND NUCLEOTIDES. Photochemistry and Photobiology, 30(3), 325-329. doi:10.1111/j.1751-1097.1979.tb07363.x es_ES
dc.description.references Salet, C., & Bensasson, R. (1975). STUDIES ON THYMINE AND URACIL TRIPLET EXCITED STATE IN ACETONITRILE AND WATER. Photochemistry and Photobiology, 22(6), 231-235. doi:10.1111/j.1751-1097.1975.tb06741.x es_ES
dc.description.references Kasama, K., Takematsu, A., & Arai, S. (1982). Photochemical reactions of triplet acetone with indole, purine, and pyrimidine derivatives. The Journal of Physical Chemistry, 86(13), 2420-2427. doi:10.1021/j100210a035 es_ES
dc.description.references Zuo, Z., Yao, S., Luo, J., Wang, W., Zhang, J., & Lin, N. (1992). Laser photolysis of cytosine, cytidine and dCMP in aqueous solution. Journal of Photochemistry and Photobiology B: Biology, 15(3), 215-222. doi:10.1016/1011-1344(92)85125-e es_ES
dc.description.references Gut, I. G., Wood, P. D., & Redmond, R. W. (1996). Interaction of Triplet Photosensitizers with Nucleotides and DNA in Aqueous Solution at Room Temperature. Journal of the American Chemical Society, 118(10), 2366-2373. doi:10.1021/ja9519344 es_ES
dc.description.references (s. f.). doi:10.1021/ja954340 es_ES
dc.description.references Song, Q., Lin, W., Yao, S., & Lin, N. (1998). Comparative studies of triplet states of thymine components by acetone sensitization and direct excitation in aqueous solution at room temperature. Journal of Photochemistry and Photobiology A: Chemistry, 114(3), 181-184. doi:10.1016/s1010-6030(98)00219-6 es_ES
dc.description.references Crespo-Hernández, C. E., Cohen, B., Hare, P. M., & Kohler, B. (2004). Ultrafast Excited-State Dynamics in Nucleic Acids. Chemical Reviews, 104(4), 1977-2020. doi:10.1021/cr0206770 es_ES
dc.description.references Samoylova, E., Lippert, H., Ullrich, S., Hertel, I. V., Radloff, W., & Schultz, T. (2005). Dynamics of Photoinduced Processes in Adenine and Thymine Base Pairs. Journal of the American Chemical Society, 127(6), 1782-1786. doi:10.1021/ja044369q es_ES
dc.description.references Schreier, W. J., Schrader, T. E., Koller, F. O., Gilch, P., Crespo-Hernandez, C. E., Swaminathan, V. N., … Kohler, B. (2007). Thymine Dimerization in DNA Is an Ultrafast Photoreaction. Science, 315(5812), 625-629. doi:10.1126/science.1135428 es_ES
dc.description.references Hare, P. M., Middleton, C. T., Mertel, K. I., Herbert, J. M., & Kohler, B. (2008). Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine. Chemical Physics, 347(1-3), 383-392. doi:10.1016/j.chemphys.2007.10.035 es_ES
dc.description.references Kwok, W.-M., Ma, C., & Phillips, D. L. (2008). A Doorway State Leads to Photostability or Triplet Photodamage in Thymine DNA. Journal of the American Chemical Society, 130(15), 5131-5139. doi:10.1021/ja077831q es_ES
dc.description.references Marguet, S., & Markovitsi, D. (2005). Time-Resolved Study of Thymine Dimer Formation. Journal of the American Chemical Society, 127(16), 5780-5781. doi:10.1021/ja050648h es_ES
dc.description.references Wagner, J. R., Lier, J.-E. van, & JOHNSTON, L. J. (1990). QUINONE SENSITIZED ELECTRON TRANSFER PHOTOOXIDATION OF NUCLEIC ACIDS: CHEMISTRY OF THYMINE AND THYMIDINE RADICAL CATIONS IN AQUEOUS SOLUTION. Photochemistry and Photobiology, 52(2), 333-343. doi:10.1111/j.1751-1097.1990.tb04189.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem