- -

Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations

Show full item record

Almenar, P.; Jódar Sánchez, LA. (2013). Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations. Abstract and Applied Analysis. 2013:1-11. doi:10.1155/2013/987976

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62576

Files in this item

Item Metadata

Title: Convergent Disfocality and Nondisfocality Criteria for Second-Order Linear Differential Equations
Author: Almenar, Pedro Jódar Sánchez, Lucas Antonio
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
This paper presents a method to determine whether the second-order linear differential equation y(n) + q(x)y = 0 is either disfocal or nondisfocal in a fixed interval. The method is based on the recursive application of a ...[+]
Subjects: Inequality , Oscillation , Lyapunov
Copyrigths: Reconocimiento (by)
Source:
Abstract and Applied Analysis. (issn: 1085-3375 ) (eissn: 1687-0409 )
DOI: 10.1155/2013/987976
Publisher:
Hindawi Publishing Corporation
Publisher version: http://dx.doi.org/10.1155/2013/987976
Project ID:
Spanish Ministry of Science and Innovation Project DPI2010-C02-01
Description: Copyright © 2013 Pedro Almenar and Lucas Jódar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Thanks:
This work has been supported by the Spanish Ministry of Science and Innovation Project DPI2010-C02-01.
Type: Artículo

References

Kwong, M. K. (1981). On Lyapunov’s inequality for disfocality. Journal of Mathematical Analysis and Applications, 83(2), 486-494. doi:10.1016/0022-247x(81)90137-2

Kwong, M. K. (1999). Integral Inequalities for Second-Order Linear Oscillation. Mathematical Inequalities & Applications, (1), 55-71. doi:10.7153/mia-02-06

Harris, B. . (1990). On an inequality of Lyapunov for disfocality. Journal of Mathematical Analysis and Applications, 146(2), 495-500. doi:10.1016/0022-247x(90)90319-b [+]
Kwong, M. K. (1981). On Lyapunov’s inequality for disfocality. Journal of Mathematical Analysis and Applications, 83(2), 486-494. doi:10.1016/0022-247x(81)90137-2

Kwong, M. K. (1999). Integral Inequalities for Second-Order Linear Oscillation. Mathematical Inequalities & Applications, (1), 55-71. doi:10.7153/mia-02-06

Harris, B. . (1990). On an inequality of Lyapunov for disfocality. Journal of Mathematical Analysis and Applications, 146(2), 495-500. doi:10.1016/0022-247x(90)90319-b

Brown, R. C., & Hinton, D. B. (1997). Proceedings of the American Mathematical Society, 125(04), 1123-1130. doi:10.1090/s0002-9939-97-03907-5

Tipler, F. J. (1978). General relativity and conjugate ordinary differential equations. Journal of Differential Equations, 30(2), 165-174. doi:10.1016/0022-0396(78)90012-8

Došlý, O. (1993). Conjugacy Criteria for Second Order Differential Equations. Rocky Mountain Journal of Mathematics, 23(3), 849-861. doi:10.1216/rmjm/1181072527

Moore, R. (1955). The behavior of solutions of a linear differential equation of second order. Pacific Journal of Mathematics, 5(1), 125-145. doi:10.2140/pjm.1955.5.125

Almenar, P., & Jódar, L. (2012). An upper bound for the distance between a zero and a critical point of a solution of a second order linear differential equation. Computers & Mathematics with Applications, 63(1), 310-317. doi:10.1016/j.camwa.2011.11.023

Almenar, P., & Jódar, L. (2013). The Distribution of Zeroes and Critical Points of Solutions of a Second Order Half-Linear Differential Equation. Abstract and Applied Analysis, 2013, 1-6. doi:10.1155/2013/147192

Bellman, R. (1943). The stability of solutions of linear differential equations. Duke Mathematical Journal, 10(4), 643-647. doi:10.1215/s0012-7094-43-01059-2

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record