- -

An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

Show full item record

Conesa Domínguez, C.; García Breijo, E.; Loeff, E.; Seguí Gil, L.; Fito Maupoey, P.; Laguarda Miró, N. (2015). An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production. Sensors. 15(9):22941-22955. https://doi.org/10.3390/s150922941

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/62745

Files in this item

Item Metadata

Title: An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production
Author: Conesa Domínguez, Claudia García Breijo, Eduardo Loeff, Edwin Seguí Gil, Lucía Fito Maupoey, Pedro Laguarda Miró, Nicolás
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Issued date:
Abstract:
Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from ...[+]
Subjects: Bioethanol , Saccharification , Electrochemical impedance spectroscopy , Fermentable sugars , Pineapple waste
Copyrigths: Reconocimiento (by)
Source:
Sensors. (issn: 1424-8220 )
DOI: 10.3390/s150922941
Publisher:
MDPI
Publisher version: http://dx.doi.org/10.3390/s150922941
Project ID:
info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-04/ES/DESARROLLO DE NUEVOS SISTEMAS DE DETECCION Y ACCION BASADOS EN TECNOLOGIAS ELECTRONICAS Y MICROELECTRONICAS PARA SU APLICACION EN SISTEMAS DE LIBERACION Y DETECCION DE GASES/ /
Thanks:
Financial support from the Spanish Government and European FEDER funds (MAT2012-38429-C04-04) and FPI-UPV Program are gratefully acknowledged.
Type: Artículo

References

FAOSTAT—Food and Agriculture Organization of the United Nations. Statistics Divisionhttp://faostat.fao.org

Reinhardt, A., & Rodriguez, L. V. (2009). INDUSTRIAL PROCESSING OF PINEAPPLE â TRENDS AND PERSPECTIVES. Acta Horticulturae, (822), 323-328. doi:10.17660/actahortic.2009.822.40

Ketnawa, S., Chaiwut, P., & Rawdkuen, S. (2012). Pineapple wastes: A potential source for bromelain extraction. Food and Bioproducts Processing, 90(3), 385-391. doi:10.1016/j.fbp.2011.12.006 [+]
FAOSTAT—Food and Agriculture Organization of the United Nations. Statistics Divisionhttp://faostat.fao.org

Reinhardt, A., & Rodriguez, L. V. (2009). INDUSTRIAL PROCESSING OF PINEAPPLE â TRENDS AND PERSPECTIVES. Acta Horticulturae, (822), 323-328. doi:10.17660/actahortic.2009.822.40

Ketnawa, S., Chaiwut, P., & Rawdkuen, S. (2012). Pineapple wastes: A potential source for bromelain extraction. Food and Bioproducts Processing, 90(3), 385-391. doi:10.1016/j.fbp.2011.12.006

Nigam, J. (1999). Continuous ethanol production from pineapple cannery waste. Journal of Biotechnology, 72(3), 197-202. doi:10.1016/s0168-1656(99)00106-6

Tanaka, K., Hilary, Z. D., & Ishizaki, A. (1999). Investigation of the utility of pineapple juice and pineapple waste material as low-cost substrate for ethanol fermentation by Zymomonas mobilis. Journal of Bioscience and Bioengineering, 87(5), 642-646. doi:10.1016/s1389-1723(99)80128-5

Ruangviriyachai, C., Niwaswong, C., Kosaikanon, N., Chanthai, S., & Chaimart, P. (2010). Pineapple Peel Waste for Bioethanol Production. Journal of Biotechnology, 150, 10-10. doi:10.1016/j.jbiotec.2010.08.041

Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology, 61(1), 263-289. doi:10.1146/annurev-arplant-042809-112315

Yang, B., Dai, Z., Ding, S.-Y., & Wyman, C. E. (2011). Enzymatic hydrolysis of cellulosic biomass. Biofuels, 2(4), 421-449. doi:10.4155/bfs.11.116

De Cortes Sánchez-Mata, M., Cámara-Hurtado, M., & Díez-Marqués, C. (2001). Identification and quantification of soluble sugars in green beans by HPLC. European Food Research and Technology, 214(3), 254-258. doi:10.1007/s00217-001-0447-0

Karkacier, M., Erbas, M., Uslu, M. K., & Aksu, M. (2003). Comparison of Different Extraction and Detection Methods for Sugars Using Amino-Bonded Phase HPLC. Journal of Chromatographic Science, 41(6), 331-333. doi:10.1093/chromsci/41.6.331

McRae, D. A., & Esrick, M. A. (1992). The dielectric parameters of excised EMT-6 tumours and their change during hyperthermia. Physics in Medicine and Biology, 37(11), 2045-2058. doi:10.1088/0031-9155/37/11/002

Piccoli, A., Pillon, L., & Dumler, F. (2002). Impedance vector distribution by sex, race, body mass index, and age in the United States: standard reference intervals as bivariate Z scores. Nutrition, 18(2), 153-167. doi:10.1016/s0899-9007(01)00665-7

Nescolarde, L., Piccoli, A., Román, A., Núñez, A., Morales, R., Tamayo, J., … Rosell, J. (2004). Bioelectrical impedance vector analysis in haemodialysis patients: relation between oedema and mortality. Physiological Measurement, 25(5), 1271-1280. doi:10.1088/0967-3334/25/5/016

Pan, L. K., Huang, H. T., & Sun, C. Q. (2003). Dielectric relaxation and transition of porous silicon. Journal of Applied Physics, 94(4), 2695-2700. doi:10.1063/1.1594821

Prabakar, K., & Mallikarjun Rao, S. P. (2007). Complex impedance spectroscopy studies on fatigued soft and hard PZT ceramics. Journal of Alloys and Compounds, 437(1-2), 302-310. doi:10.1016/j.jallcom.2006.07.108

Cen, J., Vukas, M., Barton, G., Kavanagh, J., & Coster, H. G. L. (2015). Real time fouling monitoring with Electrical Impedance Spectroscopy. Journal of Membrane Science, 484, 133-139. doi:10.1016/j.memsci.2015.03.014

Houssin, T., Follet, J., Follet, A., Dei-Cas, E., & Senez, V. (2010). Label-free analysis of water-polluting parasite by electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 25(5), 1122-1129. doi:10.1016/j.bios.2009.09.039

Rosborg, B., & Pan, J. (2008). An electrochemical impedance spectroscopy study of copper in a bentonite/saline groundwater environment. Electrochimica Acta, 53(25), 7556-7564. doi:10.1016/j.electacta.2008.04.021

García-Breijo, E., Barat, J. M., Torres, O. L., Grau, R., Gil, L., Ibáñez, J., … Fraile, R. (2008). Development of a puncture electronic device for electrical conductivity measurements throughout meat salting. Sensors and Actuators A: Physical, 148(1), 63-67. doi:10.1016/j.sna.2008.07.013

Masot, R., Alcañiz, M., Fuentes, A., Schmidt, F. C., Barat, J. M., Gil, L., … Soto, J. (2010). Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A: Physical, 158(2), 217-223. doi:10.1016/j.sna.2010.01.010

Karásková, P., Fuentes, A., Fernández-Segovia, I., Alcañiz, M., Masot, R., & Barat, J. M. (2011). Development of a low-cost non-destructive system for measuring moisture and salt content in smoked fish products. Procedia Food Science, 1, 1195-1201. doi:10.1016/j.profoo.2011.09.178

Alcañiz, M., Vivancos, J.-L., Masot, R., Ibañez, J., Raga, M., Soto, J., & Martínez-Máñez, R. (2012). Design of an electronic system and its application to electronic tongues using variable amplitude pulse voltammetry and impedance spectroscopy. Journal of Food Engineering, 111(1), 122-128. doi:10.1016/j.jfoodeng.2012.01.014

Fernández-Segovia, I., Fuentes, A., Aliño, M., Masot, R., Alcañiz, M., & Barat, J. M. (2012). Detection of frozen-thawed salmon (Salmo salar) by a rapid low-cost method. Journal of Food Engineering, 113(2), 210-216. doi:10.1016/j.jfoodeng.2012.06.003

Fuentes, A., Masot, R., Fernández-Segovia, I., Ruiz-Rico, M., Alcañiz, M., & Barat, J. M. (2013). Differentiation between fresh and frozen-thawed sea bream (Sparus aurata) using impedance spectroscopy techniques. Innovative Food Science & Emerging Technologies, 19, 210-217. doi:10.1016/j.ifset.2013.05.001

Pérez-Esteve, E., Fuentes, A., Grau, R., Fernández-Segovia, I., Masot, R., Alcañiz, M., & Barat, J. M. (2014). Use of impedance spectroscopy for predicting freshness of sea bream (Sparus aurata). Food Control, 35(1), 360-365. doi:10.1016/j.foodcont.2013.07.025

Labrador, R. H., Masot, R., Alcañiz, M., Baigts, D., Soto, J., Martínez-Mañez, R., … Barat, J. M. (2010). Prediction of NaCl, nitrate and nitrite contents in minced meat by using a voltammetric electronic tongue and an impedimetric sensor. Food Chemistry, 122(3), 864-870. doi:10.1016/j.foodchem.2010.02.049

De Jesús, C., Hernández-Coronado, G., Girón, J., Barat, J. M., Pagan, M. J., Alcañiz, M., … Grau, R. (2014). Classification of unaltered and altered dry-cured ham by impedance spectroscopy: A preliminary study. Meat Science, 98(4), 695-700. doi:10.1016/j.meatsci.2014.05.014

Rizo, A., Fuentes, A., Fernández-Segovia, I., Masot, R., Alcañiz, M., & Barat, J. M. (2013). Development of a new salmon salting–smoking method and process monitoring by impedance spectroscopy. LWT - Food Science and Technology, 51(1), 218-224. doi:10.1016/j.lwt.2012.09.025

Wu, L., Ogawa, Y., & Tagawa, A. (2008). Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. Journal of Food Engineering, 87(2), 274-280. doi:10.1016/j.jfoodeng.2007.12.003

Llobet, E., Hines, E. L., Gardner, J. W., Bartlett, P. N., & Mottram, T. T. (1999). Fuzzy ARTMAP based electronic nose data analysis. Sensors and Actuators B: Chemical, 61(1-3), 183-190. doi:10.1016/s0925-4005(99)00288-9

Brezmes, J., Cabre, P., Rojo, S., Llobet, E., Vilanova, X., & Correig, X. (2005). Discrimination between different samples of olive oil using variable selection techniques and modified fuzzy artmap neural networks. IEEE Sensors Journal, 5(3), 463-470. doi:10.1109/jsen.2005.846186

Moreno-Barón, L., Cartas, R., Merkoçi, A., Alegret, S., del Valle, M., Leija, L., … Muñoz, R. (2006). Application of the wavelet transform coupled with artificial neural networks for quantification purposes in a voltammetric electronic tongue. Sensors and Actuators B: Chemical, 113(1), 487-499. doi:10.1016/j.snb.2005.03.063

Gil, L., Barat, J. M., Baigts, D., Martínez-Máñez, R., Soto, J., Garcia-Breijo, E., … Llobet, E. (2011). Monitoring of physical–chemical and microbiological changes in fresh pork meat under cold storage by means of a potentiometric electronic tongue. Food Chemistry, 126(3), 1261-1268. doi:10.1016/j.foodchem.2010.11.054

Ibáñez Civera, J., Garcia Breijo, E., Laguarda Miró, N., Gil Sánchez, L., Garrigues Baixauli, J., Romero Gil, I., … Alcañiz Fillol, M. (2011). Artificial neural network onto eight bit microcontroller for Secchi depth calculation. Sensors and Actuators B: Chemical, 156(1), 132-139. doi:10.1016/j.snb.2011.04.001

Garcia-Breijo, E., Garrigues, J., Sanchez, L., & Laguarda-Miro, N. (2013). An Embedded Simplified Fuzzy ARTMAP Implemented on a Microcontroller for Food Classification. Sensors, 13(8), 10418-10429. doi:10.3390/s130810418

Laguarda-Miro, N., Ferreira, F. W., García-Breijo, E., Ibáñez-Civera, J., Gil-Sánchez, L., & Garrigues-Baixauli, J. (2012). Glyphosate detection by voltammetric techniques. A comparison between statistical methods and an artificial neural network. Sensors and Actuators B: Chemical, 171-172, 528-536. doi:10.1016/j.snb.2012.05.025

Martínez Gil, P., Laguarda-Miro, N., Camino, J. S., & Peris, R. M. (2013). Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique. Talanta, 115, 702-705. doi:10.1016/j.talanta.2013.06.030

Sierra, E. V., Méndez, M. A., Sarria, V. M., & Cortés, M. T. (2008). Electrooxidación de glifosato sobre electrodos de níquel y cobre. Química Nova, 31(2), 220-226. doi:10.1590/s0100-40422008000200006

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record