- -

A one-dimensional optomechanical crystal with a complete phononic band gap

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A one-dimensional optomechanical crystal with a complete phononic band gap

Mostrar el registro completo del ítem

Gomis Bresco, J.; Navarro Urríos, D.; Oudich, M.; El-Jallal, S.; Griol Barres, A.; Puerto Garcia, D.; Chavez, E.... (2014). A one-dimensional optomechanical crystal with a complete phononic band gap. Nature Communications. 5(4452):1-6. https://doi.org/10.1038/ncomms5452

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63401

Ficheros en el ítem

Metadatos del ítem

Título: A one-dimensional optomechanical crystal with a complete phononic band gap
Autor: Gomis Bresco, Jordi Navarro Urríos, Daniel Oudich, M. El-Jallal, S. Griol Barres, Amadeu Puerto Garcia, Daniel Chavez, E. Pennec, Y. Djafari-Rouhani, B. Alzina, F. Martínez Abietar, Alejandro José Sotomayor Torres, C.M.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] Recent years have witnessed the boom of cavity optomechanics, which exploits the confinement and coupling of optical and mechanical waves at the nanoscale. Among their physical implementations, optomechanical (OM) ...[+]
Palabras clave: Optomechanics , Cavity optomechanics , Phoxonic crystals , Phononic bandgap , Quantum ground-state , Induced transparency , Oscillator , Mode
Derechos de uso: Reconocimiento (by)
Fuente:
Nature Communications. (issn: 2041-1723 )
DOI: 10.1038/ncomms5452
Editorial:
Nature Publishing Group
Versión del editor: http://dx.doi.org/10.1038/ncomms5452
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//FIS2009-10150/ES/Estudio De Fonones Acusticos Confinados En Nanoestructuras Nanofabricadas/
info:eu-repo/grantAgreement/EC/FP7/233883/EU/TAILoring photon-phonon interaction in silicon PHOXonic crystals/
info:eu-repo/grantAgreement/MINECO//MAT2012-31392/ES/DISEÑO DE LAS RELACIONES DE DISPERSION DE FONONES ACUSTICOS/
Agradecimientos:
This work was supported by the European Commission Seventh Framework Programs (FP7) under the FET-Open project TAILPHOX No 233883. J.G.-B., D.N.-U., E.C., F.A. and C.M.S.-T. acknowledge financial support from the Spanish ...[+]
Tipo: Artículo

References

Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

Kippenberg, T. J. & Vahala, K. J. Cavity Opto-Mechanics. Opt. Express 15, 17172–17205 (2007).

Favero, I. & Karrai, K. Optomechanics of deformable optical cavities. Nat. Photonics 3, 201–205 (2009). [+]
Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

Kippenberg, T. J. & Vahala, K. J. Cavity Opto-Mechanics. Opt. Express 15, 17172–17205 (2007).

Favero, I. & Karrai, K. Optomechanics of deformable optical cavities. Nat. Photonics 3, 201–205 (2009).

Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J. & Painter, O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009).

Gavartin, E., Verlot, P. & Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol 7, 509–514 (2012).

Krause, A. G., Winger, M., Blasius, T. D., Lin, Q. & Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photonics 6, 768 (2012).

Li, H., Chen, Y., Noh, J., Tadesse, S. & Li, M. Multichannel cavity optomechanics for all-optical amplification of radio frequency signals. Nat. Commun. 3, 1091 (2012).

Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012).

Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13, 013017 (2011).

Tallur, S. & Bhave, S. A. A silicon electromechanical photodetector. Nano Lett. 13, 2760–2765 (2013).

Kippenberg, T., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

Schliesser, A., Arcizet, O., Rivière, R., Anetsberger, G. & Kippenberg, T. J. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat. Phys. 5, 509–514 (2009).

Gröblacher, S. et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat. Phys. 5, 485–488 (2009).

Cleland, A. Photons refrigerating phonons. Nat. Phys. 5, 458 (2009).

Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).

Wang, Y.-D. & Clerk, A. A. Using Interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012).

Dong, C., Fiore, V., Kuzyk, M. C. & Wang, H. Optomechanical dark mode. Science 338, 1609–1613 (2012).

Tian, L. Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett. 108, 153604 (2012).

Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

Verhagen, E., Deléglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012).

Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Preprint at http://arxiv.org/abs/1303.0733v1 (2013).

Brennecke, F., Ritter, S., Donner, T. & Esslinger, T. Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235–238 (2008).

Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).

Ding, L. et al. Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Appl. Phys. Lett. 98, 113108 (2011).

O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

Goryachev, M. et al. Extremely low-loss acoustic phonons in a quartz bulk acoustic wave resonator at millikelvin temperature. Appl. Phys. Lett. 100, 243504 (2012).

Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

Gavartin, E. et al. Optomechanical coupling in a two-dimensional photonic crystal defect cavity. Phys. Rev. Lett. 106, 203902 (2011).

Sun, X., Zhang, X., Poot, M., Xiong, C. & Tang, H. X. A superhigh-frequency optoelectromechanical system based on a slotted photonic crystal cavity. Appl. Phys. Lett. 101, 221116 (2012).

Safavi-Naeini, A. H. et al. Two-dimensional phononic-photonic band gap optomechanical crystal cavity. Phys. Rev. Lett. 112, 153603 (2014).

Pennec, Y. et al. Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Adv. 1, 041901 (2011).

Maldovan, M. & Thomas, E. L. Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl. Phys. Lett. 88, 251907 (2006).

Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).

Cuffe, J. et al. Lifetimes of confined acoustic phonons in ultrathin silicon membranes. Phys. Rev. Lett. 110, 095503 (2013).

Marconnet, A. M., Kodama, T., Asheghi, M. & Goodson, K. E. Phonon conduction in periodically porous silicon nanobridges. Nanoscale Microscale Thermophys. Eng. 16, 199–219 (2012).

Ding, L., Belacel, C., Ducci, S., Leo, G. & Favero, I. Ultralow loss single-mode silica tapers manufactured by a microheater. Appl. Opt. 49, 2441 (2010).

Navarro-Urrios, D. et al. Synchronization of an optomechanical oscillator and thermal/free-carrier self-pulsing using optical comb forces. Preprint at http://arxiv.org/abs/1403.6043 (2014).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem