- -

Radial Photonic Crystal for detection of frequency and position of radiation sources

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Radial Photonic Crystal for detection of frequency and position of radiation sources

Show full item record

Carbonell Olivares, J.; Diaz Rubio, A.; Torrent Martí, D.; Cervera Moreno, FS.; Kirleis, MA.; Pique, A.; Sánchez-Dehesa Moreno-Cid, J. (2012). Radial Photonic Crystal for detection of frequency and position of radiation sources. Scientific Reports. 2(558):1-8. doi:10.1038/srep00558

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63734

Files in this item

Item Metadata

Title: Radial Photonic Crystal for detection of frequency and position of radiation sources
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
Based on the concepts of artificially microstructured materials, i.e. metamaterials, we present here the first practical realization of a radial wave crystal. This type of device was introduced as a theoretical proposal ...[+]
Subjects: GROUND-PLANE CLOAK , METAMATERIALS
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/srep00558
Publisher:
Nature Publishing Group
Publisher version: http://dx.doi.org/10.1038/srep00558
Thanks:
This work was supported in part by the Spanish Ministry of Science and Innovation under Grants TEC 2010-19751 and CSD2008-00066 (Consolider program) and by the U.S. Office of Naval Research under Grant N000140910554.
Type: Artículo

References

Pendry, J., Schurig, D. & Smith, D. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

Smith, D., Padilla, W., Vier, D., Nemat-Nasser, S. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000). [+]
Pendry, J., Schurig, D. & Smith, D. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

Smith, D., Padilla, W., Vier, D., Nemat-Nasser, S. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

Narimanov, E. E. & Kildishev, A. V. Optical black hole: Broadband omnidirectional light absorber. Appl. Phys. Lett. 95, 041106 (2009).

Grbic, A. & Eleftheriades, G. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004).

Ma, H. F. & Cui, T. J. Three-dimensional broadband ground-plane cloak made of metamaterials. Nature Communications 1, 21 (2010).

Engheta, N., Salandrino, A. & Alu, A. Circuit elements at optical frequencies: Nanoinductors, nanocapacitors and nanoresistors. Phys. Rev. Lett. 95, 095504 (2005).

Zhang, F. et al. Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial. IEEE Trans. Microwave Theory Tech. 56, 2566–2573 (2008).

Baena, J., Marques, R., Medina, F. & Martel, J. Artificial magnetic metamaterial design by using spiral resonators. Phys. Rev. B 69, 014402 (2004).

Carbonell, J., Torrent, D., Diaz-Rubio, A. & Sanchez-Dehesa, J. Multidisciplinary approach to cylindrical anisotropic metamaterials. New J. Phys. 13, 103034 (2011).

Torrent, D. & Sanchez-Dehesa, J. Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Phys. Rev. Lett. 103, 064301 (2009).

Torrent, D. & Sanchez-Dehesa, J. Acoustic resonances in two-dimensional radial sonic crystal shells. New J. Phys. 12, 073034 (2010).

Kurs, A. et al. Wireless power transfer via strongly coupled magnetic resonances. Science 317, 83–86 (2007).

Marques, R., Medina, F. & Rafii-El-Idrissi, R. Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65, 144440 (2002).

Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

Pollock, J. G. & Iyer, A. K. Effective-Medium Properties of Cylindrical Transmission-Line Metamaterials. IEEE Antennas and Wireless Propagation Letters 10, 1491–1494 (2011).

Comsol, A. B. (Sweden). Comsol Multiphysics (v. 4.1). (2010).

Ansoft. High Frequency Structure Simulator (HFSS), v.14. (2012).

Smith, D. R., Vier, D. C., Koschny, T. & Soukoulis, C. M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005).

Yang, Y. et al. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation. Nature Communications 3, 651 (2012).

Liu, R. et al. Broadband Ground-Plane Cloak. Science 323, 366–369 (2009).

Cheng, Q., Cui, T. J., Jiang, W. X. & Cai, B. G. An omnidirectional electromagnetic absorber made of metamaterials. New J. Phys. 12, 063006 (2010).

[-]

This item appears in the following Collection(s)

Show full item record