- -

Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: numerical study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: numerical study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González Suárez, Ana es_ES
dc.contributor.author Gutierrez-Herrera, Enoch es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.contributor.author Jimenez Lozano, Joel N. es_ES
dc.contributor.author Franco, Walfre es_ES
dc.date.accessioned 2016-05-11T14:27:59Z
dc.date.available 2016-05-11T14:27:59Z
dc.date.issued 2015-02
dc.identifier.issn 0196-8092
dc.identifier.uri http://hdl.handle.net/10251/63928
dc.description.abstract Background and Objective: Radiofrequency currents are commonly used in dermatology to treat cutaneous and subcutaneous tissues by heating. The subcutaneous morphology of tissue consists of a fine, collagenous and fibrous septa network enveloping clusters of adipocyte cells. The architecture of this network, namely density and orientation of septa, varies among patients and, furthermore, it correlates with cellulite grading. In this work we study the effect of two clinically relevant fibrous septa architectures on the thermal and elastic response of subcutaneous tissue to the same RF treatment; in particular, we evaluate the thermal damage and thermal stress induced to an intermediate- and a high-density fibrous septa network architecture that correspond to clinical morphologies of 2.5 and 0 cellulite grading, respectively. Study Design/Materials and Methods: We used the finite element method to assess the electric, thermal and elastic response of a two-dimensional model of skin, subcutaneous tissue and muscle subjected to a relatively long, constant, low-power RF treatment. The subcutaneous tissue is constituted by an interconnected architecture of fibrous septa and fat lobules obtained by processing micro-MRI sagittal images of hypodermis. As comparison criteria for the RF treatment of the two septa architectures, we calculated the accumulated thermal damage that corresponds to 63% loss in cell viability. Results: Electric currents preferentially circulated through the fibrous septa in the subcutaneous tissue. However, the intensity of the electric field was higher within the fat because it is a poor electric conductor. The power absorption in the fibrous septa relative to that in the fat varied with septum orientation: it was higher in septa with vertical orientation and lower in septa with horizontal orientation. Overall, maximum values of electric field intensity, power absorption and temperature were similar for both fibrous septa architectures. However, the high-density septa architecture (cellulite grade 0) had a more uniform and broader spatial distribution of power absorption, resulting in a larger cross-sectional area of thermal damage (approximate to 1.5 times more). Volumetric strains (expansion and contraction) were small and similar for both network architectures. During the first seconds of RF exposure, the fibrous septa were subjected to thermal expansion regardless of orientation. In the long term, the fibrous septa contracted due to the thermal expansion of fat. Skin and muscle were subjected to significantly higher Von Mises stresses (measure of yield) or distortion energy than the subcutaneous tissue. Conclusion: The distribution of electric currents within subcutaneous tissues depends on tissue morphology. The electric field is more intense in septum oriented along the skin to muscle (top to bottom) direction, creating lines or planes of preferential heating. It follows that the more septum available for preferential heating, the larger the extent of volumetric RF-heating and thermal damage to the subcutaneous tissue. Thermal load alone, imposed by long-exposure to heating up to 50 degrees C, results in small volumetric expansion and contraction in the subcutaneous tissue. The subcutaneous tissue is significantly less prone to non-reversible deformation by a thermal load than the skin and muscle. es_ES
dc.description.sponsorship Contract grant sponsor: Plan Nacional de I + D + I del Ministerio de Ciencia e Innovacion; Contract grant number: TEC2011-27133-C02-01; Contract grant sponsor: Generalitat Valenciana; Contract grant number: VALi+d (ACIF/2011/194), BFPI/2013/003; Contract grant sponsor: United States Air Force Office of Scientific Research. en_EN
dc.language Inglés es_ES
dc.publisher Wiley: 12 months es_ES
dc.relation.ispartof Lasers in Surgery and Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cellulite es_ES
dc.subject Fat es_ES
dc.subject Fibrous septa es_ES
dc.subject Hyperthermia es_ES
dc.subject Hypodermis es_ES
dc.subject Modeling es_ES
dc.subject Radiofrequency heating es_ES
dc.subject Skin es_ES
dc.subject Tissue mechanics es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: numerical study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/lsm.22301
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2011%2F194/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BFPI%2F2013%2F003/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation González Suárez, A.; Gutierrez-Herrera, E.; Berjano, E.; Jimenez Lozano, JN.; Franco, W. (2015). Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: numerical study. Lasers in Surgery and Medicine. 47(2):183-195. https://doi.org/10.1002/lsm.22301 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/lsm.22301 es_ES
dc.description.upvformatpinicio 183 es_ES
dc.description.upvformatpfin 195 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 47 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 282504 es_ES
dc.identifier.eissn 1096-9101
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Air Force Office of Scientific Research es_ES
dc.description.references Dierickx, C. C. (2006). The role of deep heating for noninvasive skin rejuvenation. Lasers in Surgery and Medicine, 38(9), 799-807. doi:10.1002/lsm.20446 es_ES
dc.description.references Lolis, M. S., & Goldberg, D. J. (2012). Radiofrequency in Cosmetic Dermatology: A Review. Dermatologic Surgery, 38(11), 1765-1776. doi:10.1111/j.1524-4725.2012.02547.x es_ES
dc.description.references Sadick, N. S., & Makino, Y. (2004). Selective electro-thermolysis in aesthetic medicine: A review. Lasers in Surgery and Medicine, 34(2), 91-97. doi:10.1002/lsm.20013 es_ES
dc.description.references Franco, W., Kothare, A., Ronan, S. J., Grekin, R. C., & McCalmont, T. H. (2010). Hyperthermic injury to adipocyte cells by selective heating of subcutaneous fat with a novel radiofrequency device: Feasibility studies. Lasers in Surgery and Medicine, 42(5), 361-370. doi:10.1002/lsm.20925 es_ES
dc.description.references Jimenez Lozano, J. N., Vacas-Jacques, P., Anderson, R. R., & Franco, W. (2013). Effect of Fibrous Septa in Radiofrequency Heating of Cutaneous and Subcutaneous Tissues: Computational Study. Lasers in Surgery and Medicine, 45(5), 326-338. doi:10.1002/lsm.22146 es_ES
dc.description.references Mirrashed, F., Sharp, J. C., Krause, V., Morgan, J., & Tomanek, B. (2004). Pilot study of dermal and subcutaneous fat structures by MRI in individuals who differ in gender, BMI, and cellulite grading. Skin Research and Technology, 10(3), 161-168. doi:10.1111/j.1600-0846.2004.00072.x es_ES
dc.description.references Xu F Lu T es_ES
dc.description.references Belenky, I., Margulis, A., Elman, M., Bar-Yosef, U., & Paun, S. D. (2012). Exploring Channeling Optimized Radiofrequency Energy: a Review of Radiofrequency History and Applications in Esthetic Fields. Advances in Therapy, 29(3), 249-266. doi:10.1007/s12325-012-0004-1 es_ES
dc.description.references Jiménez-Lozano, J., Vacas-Jacques, P., Anderson, R. R., & Franco, W. (2012). Selective and localized radiofrequency heating of skin and fat by controlling surface distributions of the applied voltage: analytical study. Physics in Medicine and Biology, 57(22), 7555-7578. doi:10.1088/0031-9155/57/22/7555 es_ES
dc.description.references Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 es_ES
dc.description.references Pennes, H. H. (1948). Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology, 1(2), 93-122. doi:10.1152/jappl.1948.1.2.93 es_ES
dc.description.references Franco, W., Liu, J., Romero-Méndez, R., Jia, W., Nelson, J. S., & Aguilar, G. (2007). Extent of lateral epidermal protection afforded by a cryogen spray against laser irradiation. Lasers in Surgery and Medicine, 39(5), 414-421. doi:10.1002/lsm.20511 es_ES
dc.description.references Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24 es_ES
dc.description.references Pailler-Mattei, C., Bec, S., & Zahouani, H. (2008). In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Medical Engineering & Physics, 30(5), 599-606. doi:10.1016/j.medengphy.2007.06.011 es_ES
dc.description.references Comley, K., & Fleck, N. A. (2010). A micromechanical model for the Young’s modulus of adipose tissue. International Journal of Solids and Structures, 47(21), 2982-2990. doi:10.1016/j.ijsolstr.2010.07.001 es_ES
dc.description.references Deng, Z.-S., & Liu, J. (2003). NON-FOURIER HEAT CONDUCTION EFFECT ON PREDICTION OF TEMPERATURE TRANSIENTS AND THERMAL STRESS IN SKIN CRYOPRESERVATION. Journal of Thermal Stresses, 26(8), 779-798. doi:10.1080/01495730390219377 es_ES
dc.description.references Lin, J. C. (s. f.). Microwave Thermoelastic Tomography and Imaging. Advances in Electromagnetic Fields in Living Systems, 41-76. doi:10.1007/0-387-24024-1_2 es_ES
dc.description.references Haemmerich, D., Schutt, D. J., Santos, I. dos, Webster, J. G., & Mahvi, D. M. (2005). Measurement of temperature-dependent specific heat of biological tissues. Physiological Measurement, 26(1), 59-67. doi:10.1088/0967-3334/26/1/006 es_ES
dc.description.references Bhattacharya, A., & Mahajan, R. L. (2003). Temperature dependence of thermal conductivity of biological tissues. Physiological Measurement, 24(3), 769-783. doi:10.1088/0967-3334/24/3/312 es_ES
dc.description.references Arnoczky, S. P., & Aksan, A. (2000). Thermal Modification of Connective Tissues: Basic Science Considerations and Clinical Implications. Journal of the American Academy of Orthopaedic Surgeons, 8(5), 305-313. doi:10.5435/00124635-200009000-00004 es_ES
dc.description.references Hexsel, D. M., Abreu, M., Rodrigues, T. C., Soirefmann, M., Do prado Débora Zechmeister, & Gamboa, M. M. lima. (2009). Side-By-Side Comparison of Areas with and without Cellulite Depressions Using Magnetic Resonance Imaging. Dermatologic Surgery, 35(10), 1471-1477. doi:10.1111/j.1524-4725.2009.01260.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem