- -

Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: numerical study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: numerical study

Mostrar el registro completo del ítem

González Suárez, A.; Gutierrez-Herrera, E.; Berjano, E.; Jimenez Lozano, JN.; Franco, W. (2015). Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: numerical study. Lasers in Surgery and Medicine. 47(2):183-195. https://doi.org/10.1002/lsm.22301

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63928

Ficheros en el ítem

Metadatos del ítem

Título: Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: numerical study
Autor: González Suárez, Ana Gutierrez-Herrera, Enoch Berjano, Enrique Jimenez Lozano, Joel N. Franco, Walfre
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
Background and Objective: Radiofrequency currents are commonly used in dermatology to treat cutaneous and subcutaneous tissues by heating. The subcutaneous morphology of tissue consists of a fine, collagenous and fibrous ...[+]
Palabras clave: Cellulite , Fat , Fibrous septa , Hyperthermia , Hypodermis , Modeling , Radiofrequency heating , Skin , Tissue mechanics
Derechos de uso: Reserva de todos los derechos
Fuente:
Lasers in Surgery and Medicine. (issn: 0196-8092 ) (eissn: 1096-9101 )
DOI: 10.1002/lsm.22301
Editorial:
Wiley: 12 months
Versión del editor: http://dx.doi.org/10.1002/lsm.22301
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/
info:eu-repo/grantAgreement/GVA//ACIF%2F2011%2F194/
info:eu-repo/grantAgreement/GVA//BFPI%2F2013%2F003/
Agradecimientos:
Contract grant sponsor: Plan Nacional de I + D + I del Ministerio de Ciencia e Innovacion; Contract grant number: TEC2011-27133-C02-01; Contract grant sponsor: Generalitat Valenciana; Contract grant number: VALi+d ...[+]
Tipo: Artículo

References

Dierickx, C. C. (2006). The role of deep heating for noninvasive skin rejuvenation. Lasers in Surgery and Medicine, 38(9), 799-807. doi:10.1002/lsm.20446

Lolis, M. S., & Goldberg, D. J. (2012). Radiofrequency in Cosmetic Dermatology: A Review. Dermatologic Surgery, 38(11), 1765-1776. doi:10.1111/j.1524-4725.2012.02547.x

Sadick, N. S., & Makino, Y. (2004). Selective electro-thermolysis in aesthetic medicine: A review. Lasers in Surgery and Medicine, 34(2), 91-97. doi:10.1002/lsm.20013 [+]
Dierickx, C. C. (2006). The role of deep heating for noninvasive skin rejuvenation. Lasers in Surgery and Medicine, 38(9), 799-807. doi:10.1002/lsm.20446

Lolis, M. S., & Goldberg, D. J. (2012). Radiofrequency in Cosmetic Dermatology: A Review. Dermatologic Surgery, 38(11), 1765-1776. doi:10.1111/j.1524-4725.2012.02547.x

Sadick, N. S., & Makino, Y. (2004). Selective electro-thermolysis in aesthetic medicine: A review. Lasers in Surgery and Medicine, 34(2), 91-97. doi:10.1002/lsm.20013

Franco, W., Kothare, A., Ronan, S. J., Grekin, R. C., & McCalmont, T. H. (2010). Hyperthermic injury to adipocyte cells by selective heating of subcutaneous fat with a novel radiofrequency device: Feasibility studies. Lasers in Surgery and Medicine, 42(5), 361-370. doi:10.1002/lsm.20925

Jimenez Lozano, J. N., Vacas-Jacques, P., Anderson, R. R., & Franco, W. (2013). Effect of Fibrous Septa in Radiofrequency Heating of Cutaneous and Subcutaneous Tissues: Computational Study. Lasers in Surgery and Medicine, 45(5), 326-338. doi:10.1002/lsm.22146

Mirrashed, F., Sharp, J. C., Krause, V., Morgan, J., & Tomanek, B. (2004). Pilot study of dermal and subcutaneous fat structures by MRI in individuals who differ in gender, BMI, and cellulite grading. Skin Research and Technology, 10(3), 161-168. doi:10.1111/j.1600-0846.2004.00072.x

Xu F Lu T

Belenky, I., Margulis, A., Elman, M., Bar-Yosef, U., & Paun, S. D. (2012). Exploring Channeling Optimized Radiofrequency Energy: a Review of Radiofrequency History and Applications in Esthetic Fields. Advances in Therapy, 29(3), 249-266. doi:10.1007/s12325-012-0004-1

Jiménez-Lozano, J., Vacas-Jacques, P., Anderson, R. R., & Franco, W. (2012). Selective and localized radiofrequency heating of skin and fat by controlling surface distributions of the applied voltage: analytical study. Physics in Medicine and Biology, 57(22), 7555-7578. doi:10.1088/0031-9155/57/22/7555

Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107

Pennes, H. H. (1948). Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology, 1(2), 93-122. doi:10.1152/jappl.1948.1.2.93

Franco, W., Liu, J., Romero-Méndez, R., Jia, W., Nelson, J. S., & Aguilar, G. (2007). Extent of lateral epidermal protection afforded by a cryogen spray against laser irradiation. Lasers in Surgery and Medicine, 39(5), 414-421. doi:10.1002/lsm.20511

Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24

Pailler-Mattei, C., Bec, S., & Zahouani, H. (2008). In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Medical Engineering & Physics, 30(5), 599-606. doi:10.1016/j.medengphy.2007.06.011

Comley, K., & Fleck, N. A. (2010). A micromechanical model for the Young’s modulus of adipose tissue. International Journal of Solids and Structures, 47(21), 2982-2990. doi:10.1016/j.ijsolstr.2010.07.001

Deng, Z.-S., & Liu, J. (2003). NON-FOURIER HEAT CONDUCTION EFFECT ON PREDICTION OF TEMPERATURE TRANSIENTS AND THERMAL STRESS IN SKIN CRYOPRESERVATION. Journal of Thermal Stresses, 26(8), 779-798. doi:10.1080/01495730390219377

Lin, J. C. (s. f.). Microwave Thermoelastic Tomography and Imaging. Advances in Electromagnetic Fields in Living Systems, 41-76. doi:10.1007/0-387-24024-1_2

Haemmerich, D., Schutt, D. J., Santos, I. dos, Webster, J. G., & Mahvi, D. M. (2005). Measurement of temperature-dependent specific heat of biological tissues. Physiological Measurement, 26(1), 59-67. doi:10.1088/0967-3334/26/1/006

Bhattacharya, A., & Mahajan, R. L. (2003). Temperature dependence of thermal conductivity of biological tissues. Physiological Measurement, 24(3), 769-783. doi:10.1088/0967-3334/24/3/312

Arnoczky, S. P., & Aksan, A. (2000). Thermal Modification of Connective Tissues: Basic Science Considerations and Clinical Implications. Journal of the American Academy of Orthopaedic Surgeons, 8(5), 305-313. doi:10.5435/00124635-200009000-00004

Hexsel, D. M., Abreu, M., Rodrigues, T. C., Soirefmann, M., Do prado Débora Zechmeister, & Gamboa, M. M. lima. (2009). Side-By-Side Comparison of Areas with and without Cellulite Depressions Using Magnetic Resonance Imaging. Dermatologic Surgery, 35(10), 1471-1477. doi:10.1111/j.1524-4725.2009.01260.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem