- -

Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L

Mostrar el registro completo del ítem

Ruíz González, MJ.; Fares Riaño, MA. (2013). Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L. BMC Evolutionary Biology. 13(156):1-13. https://doi.org/10.1186/1471-2148-13-156

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/63947

Ficheros en el ítem

Metadatos del ítem

Título: Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L
Autor: Ruíz González, Mario Javier Fares Riaño, Mario Ali
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Background: GroESL is a heat-shock protein ubiquitous in bacteria and eukaryotic organelles. This evolutionarily conserved protein is involved in the folding of a wide variety of other proteins in the cytosol, being ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Evolutionary Biology. (issn: 1471-2148 )
DOI: 10.1186/1471-2148-13-156
Editorial:
BioMed Central
Versión del editor: http://dx.doi.org/10.1186/1471-2148-13-156
Código del Proyecto:
info:eu-repo/grantAgreement/SFI/SFI Research Frontiers Programme (RFP)/10/RFP/GEN2685/IE/
info:eu-repo/grantAgreement/MICINN//BFU2009-12022/ES/Impacto De La Duplicacion Genomica En La Innovacion Y Geometria Funcional De Arabidopsis Thaliana/
Agradecimientos:
This study was supported by Science Foundation Ireland (10/RFP/GEN2685) and a grant from the Ministerio de Ciencia e Innovacion (BFU2009-12022) to MAF. MXRG is supported by the JAE DOC-2009, Ministerio de Ciencia e Innovacion. ...[+]
Tipo: Artículo

References

Lund, P. A. (2009). Multiple chaperonins in bacteria – why so many? FEMS Microbiology Reviews, 33(4), 785-800. doi:10.1111/j.1574-6976.2009.00178.x

Radford, S. E. (2006). GroEL: More than Just a Folding Cage. Cell, 125(5), 831-833. doi:10.1016/j.cell.2006.05.021

Lin, Z., & Rye, H. S. (2006). GroEL-Mediated Protein Folding: Making the Impossible, Possible. Critical Reviews in Biochemistry and Molecular Biology, 41(4), 211-239. doi:10.1080/10409230600760382 [+]
Lund, P. A. (2009). Multiple chaperonins in bacteria – why so many? FEMS Microbiology Reviews, 33(4), 785-800. doi:10.1111/j.1574-6976.2009.00178.x

Radford, S. E. (2006). GroEL: More than Just a Folding Cage. Cell, 125(5), 831-833. doi:10.1016/j.cell.2006.05.021

Lin, Z., & Rye, H. S. (2006). GroEL-Mediated Protein Folding: Making the Impossible, Possible. Critical Reviews in Biochemistry and Molecular Biology, 41(4), 211-239. doi:10.1080/10409230600760382

Mayhew, M., da Silva, A. C. R., Martin, J., Erdjument-Bromage, H., Tempst, P., & Hartl, F. U. (1996). Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature, 379(6564), 420-426. doi:10.1038/379420a0

VanBogelen, R. A., Acton, M. A., & Neidhardt, F. C. (1987). Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli. Genes & Development, 1(6), 525-531. doi:10.1101/gad.1.6.525

Kerner, M. J., Naylor, D. J., Ishihama, Y., Maier, T., Chang, H.-C., Stines, A. P., … Hartl, F. U. (2005). Proteome-wide Analysis of Chaperonin-Dependent Protein Folding in Escherichia coli. Cell, 122(2), 209-220. doi:10.1016/j.cell.2005.05.028

Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L., & Sigler, P. B. (1994). The crystal structure of the bacterial chaperonln GroEL at 2.8 Å. Nature, 371(6498), 578-586. doi:10.1038/371578a0

Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch, L., & Deisenhofer, J. (1996). The crystal structure of the GroES co-chaperonin at 2.8 Å resolution. Nature, 379(6560), 37-45. doi:10.1038/379037a0

Xu, Z., Horwich, A. L., & Sigler, P. B. (1997). The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature, 388(6644), 741-750. doi:10.1038/41944

Thirumalai, D., & Lorimer, G. H. (2001). Chaperonin-Mediated Protein Folding. Annual Review of Biophysics and Biomolecular Structure, 30(1), 245-269. doi:10.1146/annurev.biophys.30.1.245

Ellis, R. J. (2005). Chaperomics: In Vivo GroEL Function Defined. Current Biology, 15(17), R661-R663. doi:10.1016/j.cub.2005.08.025

Ellis, R. J. (s. f.). Protein Misassembly. Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks, 1-13. doi:10.1007/978-0-387-39975-1_1

Horwich, A. L., Fenton, W. A., Chapman, E., & Farr, G. W. (2007). Two Families of Chaperonin: Physiology and Mechanism. Annual Review of Cell and Developmental Biology, 23(1), 115-145. doi:10.1146/annurev.cellbio.23.090506.123555

Tuccinardi, D., Fioriti, E., Manfrini, S., D’Amico, E., & Pozzilli, P. (2011). DiaPep277 peptide therapy in the context of other immune intervention trials in type 1 diabetes. Expert Opinion on Biological Therapy, 11(9), 1233-1240. doi:10.1517/14712598.2011.599319

Zonneveld-Huijssoon, E., Roord, S. T. A., de Jager, W., Klein, M., Albani, S., Anderton, S. M., … Prakken, B. J. (2011). Bystander suppression of experimental arthritis by nasal administration of a heat shock protein peptide. Annals of the Rheumatic Diseases, 70(12), 2199-2206. doi:10.1136/ard.2010.136994

Ronaghy, A., de Jager, W., Zonneveld-Huijssoon, E., Klein, M. R., van Wijk, F., Rijkers, G. T., … Prakken, B. J. (2011). Vaccination leads to an aberrant FOXP3 T-cell response in non-remitting juvenile idiopathic arthritis. Annals of the Rheumatic Diseases, 70(11), 2037-2043. doi:10.1136/ard.2010.145151

George, R., Kelly, S. M., Price, N. C., Erbse, A., Fisher, M., & Lund, P. A. (2004). Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochemical and Biophysical Research Communications, 324(2), 822-828. doi:10.1016/j.bbrc.2004.09.140

Rodríguez-Quiñones, F., Maguire, M., Wallington, E. J., Gould, P. S., Yerko, V., Downie, J. A., & Lund, P. A. (2005). Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Archives of Microbiology, 183(4), 253-265. doi:10.1007/s00203-005-0768-7

Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W. R., & Hatfull, G. F. (2005). GroEL1: A Dedicated Chaperone Involved in Mycolic Acid Biosynthesis during Biofilm Formation in Mycobacteria. Cell, 123(5), 861-873. doi:10.1016/j.cell.2005.09.012

Bittner, A. N., Foltz, A., & Oke, V. (2006). Only One of Five groEL Genes Is Required for Viability and Successful Symbiosis in Sinorhizobium meliloti. Journal of Bacteriology, 189(5), 1884-1889. doi:10.1128/jb.01542-06

Gould, P. S., Burgar, H. R., & Lund, P. A. (2007). Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress & Chaperones, 12(2), 123. doi:10.1379/csc-227r.1

Li, J., Wang, Y., Zhang, C. -y., Zhang, W. -y., Jiang, D. -m., Wu, Z. -h., … Li, Y. -z. (2010). Myxococcus xanthus Viability Depends on GroEL Supplied by Either of Two Genes, but the Paralogs Have Different Functions during Heat Shock, Predation, and Development. Journal of Bacteriology, 192(7), 1875-1881. doi:10.1128/jb.01458-09

Wang, Y., Zhang, W., Zhang, Z., Li, J., Li, Z., Tan, Z., … Li, Y. (2013). Mechanisms Involved in the Functional Divergence of Duplicated GroEL Chaperonins in Myxococcus xanthus DK1622. PLoS Genetics, 9(2), e1003306. doi:10.1371/journal.pgen.1003306

Fares, M. A., Barrio, E., Sabater-Muñoz, B., & Moya, A. (2002). The Evolution of the Heat-Shock Protein GroEL from Buchnera, the Primary Endosymbiont of Aphids, Is Governed by Positive Selection. Molecular Biology and Evolution, 19(7), 1162-1170. doi:10.1093/oxfordjournals.molbev.a004174

McNally, D., & Fares, M. A. (2007). In silico identification of functional divergence between the multiple groEL gene paralogs in Chlamydiae. BMC Evolutionary Biology, 7(1), 81. doi:10.1186/1471-2148-7-81

Liu, H., Kovács, E., & Lund, P. A. (2009). Characterisation of mutations in GroES that allow GroEL to function as a single ring. FEBS Letters, 583(14), 2365-2371. doi:10.1016/j.febslet.2009.06.027

Fujiwara, K., Ishihama, Y., Nakahigashi, K., Soga, T., & Taguchi, H. (2010). A systematic survey of in vivo obligate chaperonin-dependent substrates. The EMBO Journal, 29(9), 1552-1564. doi:10.1038/emboj.2010.52

Buckle, A. M., Zahn, R., & Fersht, A. R. (1997). A structural model for GroEL-polypeptide recognition. Proceedings of the National Academy of Sciences, 94(8), 3571-3575. doi:10.1073/pnas.94.8.3571

Fenton, W. A., Kashi, Y., Furtak, K., & Norwich, A. L. (1994). Residues in chaperonin GroEL required for polypeptide binding and release. Nature, 371(6498), 614-619. doi:10.1038/371614a0

Gloor, G. B., Martin, L. C., Wahl, L. M., & Dunn, S. D. (2005). Mutual Information in Protein Multiple Sequence Alignments Reveals Two Classes of Coevolving Positions†. Biochemistry, 44(19), 7156-7165. doi:10.1021/bi050293e

Davis, B. H., Poon, A. F. Y., & Whitlock, M. C. (2009). Compensatory mutations are repeatable and clustered within proteins. Proceedings of the Royal Society B: Biological Sciences, 276(1663), 1823-1827. doi:10.1098/rspb.2008.1846

Codoñer, F. M., O’Dea, S., & Fares, M. A. (2008). Reducing the false positive rate in the non-parametric analysis of molecular coevolution. BMC Evolutionary Biology, 8(1), 106. doi:10.1186/1471-2148-8-106

Halabi, N., Rivoire, O., Leibler, S., & Ranganathan, R. (2009). Protein Sectors: Evolutionary Units of Three-Dimensional Structure. Cell, 138(4), 774-786. doi:10.1016/j.cell.2009.07.038

Hu, Y., Henderson, B., Lund, P. A., Tormay, P., Ahmed, M. T., Gurcha, S. S., … Coates, A. R. M. (2008). A Mycobacterium tuberculosis Mutant Lacking the groEL Homologue cpn60.1 Is Viable but Fails To Induce an Inflammatory Response in Animal Models of Infection. Infection and Immunity, 76(4), 1535-1546. doi:10.1128/iai.01078-07

Hogenhout, S. A., van der Wilk, F., Verbeek, M., Goldbach, R. W., & van den Heuvel, J. F. J. M. (2000). Identifying the Determinants in the Equatorial Domain of Buchnera GroEL Implicated in Binding Potato Leafroll Virus. Journal of Virology, 74(10), 4541-4548. doi:10.1128/jvi.74.10.4541-4548.2000

Buck, M. J., & Atchley, W. R. (2005). Networks of Coevolving Sites in Structural and Functional Domains of Serpin Proteins. Molecular Biology and Evolution, 22(7), 1627-1634. doi:10.1093/molbev/msi157

Gloor, G. B., Tyagi, G., Abrassart, D. M., Kingston, A. J., Fernandes, A. D., Dunn, S. D., & Brandl, C. J. (2010). Functionally Compensating Coevolving Positions Are Neither Homoplasic Nor Conserved in Clades. Molecular Biology and Evolution, 27(5), 1181-1191. doi:10.1093/molbev/msq004

Tillier, E. R. M., & Charlebois, R. L. (2009). The human protein coevolution network. Genome Research, 19(10), 1861-1871. doi:10.1101/gr.092452.109

Fares, M. A., & McNally, D. (2006). CAPS: coevolution analysis using protein sequences. Bioinformatics, 22(22), 2821-2822. doi:10.1093/bioinformatics/btl493

Travers, S. A. A., & Fares, M. A. (2007). Functional Coevolutionary Networks of the Hsp70–Hop–Hsp90 System Revealed through Computational Analyses. Molecular Biology and Evolution, 24(4), 1032-1044. doi:10.1093/molbev/msm022

Travers, S. A. A., Tully, D. C., McCormack, G. P., & Fares, M. A. (2007). A Study of the Coevolutionary Patterns Operating within the env Gene of the HIV-1 Group M Subtypes. Molecular Biology and Evolution, 24(12), 2787-2801. doi:10.1093/molbev/msm213

Tillier, E. R. M., & Lui, T. W. H. (2003). Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments. Bioinformatics, 19(6), 750-755. doi:10.1093/bioinformatics/btg072

Little, D. Y., & Chen, L. (2009). Identification of Coevolving Residues and Coevolution Potentials Emphasizing Structure, Bond Formation and Catalytic Coordination in Protein Evolution. PLoS ONE, 4(3), e4762. doi:10.1371/journal.pone.0004762

Tang, Y.-C., Chang, H.-C., Roeben, A., Wischnewski, D., Wischnewski, N., Kerner, M. J., … Hayer-Hartl, M. (2006). Structural Features of the GroEL-GroES Nano-Cage Required for Rapid Folding of Encapsulated Protein. Cell, 125(5), 903-914. doi:10.1016/j.cell.2006.04.027

Yifrach, O., & Horovitz, A. (1995). Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry, 34(16), 5303-5308. doi:10.1021/bi00016a001

Horovitz, A., Fridmann, Y., Kafri, G., & Yifrach, O. (2001). Review: Allostery in Chaperonins. Journal of Structural Biology, 135(2), 104-114. doi:10.1006/jsbi.2001.4377

Weissman, J. S., Hohl, C. M., Kovalenko, O., Kashi, Y., Chen, S., Braig, K., … Norwich, A. L. (1995). Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under groes. Cell, 83(4), 577-587. doi:10.1016/0092-8674(95)90098-5

Fares, M. A., Ruiz-González, M. X., & Labrador, J. P. (2011). Protein coadaptation and the design of novel approaches to identify protein-protein interactions. IUBMB Life, 63(4), 264-271. doi:10.1002/iub.455

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404

Thompson, J. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876-4882. doi:10.1093/nar/25.24.4876

Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., & Ideker, T. (2010). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27(3), 431-432. doi:10.1093/bioinformatics/btq675

Fares, M. A., & Travers, S. A. A. (2006). A Novel Method for Detecting Intramolecular Coevolution: Adding a Further Dimension to Selective Constraints Analyses. Genetics, 173(1), 9-23. doi:10.1534/genetics.105.053249

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem