- -

Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hillung, Julia es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.contributor.author Cuevas Torrijos, Jose Manuel es_ES
dc.date.accessioned 2016-05-12T10:56:04Z
dc.date.available 2016-05-12T10:56:04Z
dc.date.issued 2013-11-13
dc.identifier.issn 1471-2148
dc.identifier.uri http://hdl.handle.net/10251/63967
dc.description.abstract Background: Pipo was recently described as a new ORF encoded within the genome of the Potyviridae family members (PNAS 105: 5897-5902, 2008). It is embedded within the P3 cistron and is translated in the +2 reading frame relative to the potyviral long ORF as the P3N-PIPO fusion protein. In this work, we first collected pipo nucleotide sequences available for different isolates of 48 Potyvirus species. Second, to determine the biological implications of variation in pipo length, we measured infectivity, viral accumulation, cell-to-cell and systemic movements for two Turnip mosaic virus (TuMV) variants with pipo alleles of different length in three different susceptible host species, and tested for differences between the two variants. Results: In addition to inter-specific variation, there was high variation in the length of the PIPO protein among isolates within species (ranging from 1 to 89 amino acids). Furthermore, selection analyses on the P3 cistron did not account for the existence of stop codons in the pipo ORF, but showed that positive selection was significant in the overlapping region for Potato virus Y (PVY) and TuMV. In some cases, variability in length was associated with host species, geographic provenance and/or other strain features. We found significant empirical differences among the phenotypes associated with TuMV pipo alleles, though the magnitude and sign of the effects were host-dependent. Conclusions: The combination of computational molecular evolution analyses and experiments stemming from these analyses provide clues about the selective pressures acting upon the different-length pipo alleles and show that variation in length may be maintained by host-driven selection. es_ES
dc.description.sponsorship We thank Jose A. Daros for providing the TuMV-GFP infectious clone, Mario A. Fares and Guillaume Lafforgue for fruitful discussion, Guillermo Rodrigo for assistance with MATLAB and for critically reading of the manuscript, Mark P. Zwart for critically reading the manuscript, and Francisca de la Iglesia for excellent technical assistance. Funding for this work was provided by the Spanish Direccion General de Investigacion Cientifica y Tecnica grant BFU2012-30805 (to SFE), a predoctoral fellowship from the Spanish Ministerio de Economia y Competitividad (to JH), and a postdoctoral contract from CSIC JAE-doc program (to JMC). en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BMC Evolutionary Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bayesian phylogenetic methods es_ES
dc.subject Host-range determinants es_ES
dc.subject Molecular evolution es_ES
dc.subject Potyvirus es_ES
dc.subject Virus evolution es_ES
dc.subject Virus fitness components es_ES
dc.title Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/1471-2148-13-249
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Hillung, J.; Elena Fito, SF.; Cuevas Torrijos, JM. (2013). Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses. BMC Evolutionary Biology. 13(249):1-10. https://doi.org/10.1186/1471-2148-13-249 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/1471-2148-13-249 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 249 es_ES
dc.relation.senia 260570 es_ES
dc.identifier.pmid 24225158 en_EN
dc.identifier.pmcid PMC3840659 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Riechmann, J. L., Lain, S., & Garcia, J. A. (1992). Highlights and prospects of potyvirus molecular biology. Journal of General Virology, 73(1), 1-16. doi:10.1099/0022-1317-73-1-1 es_ES
dc.description.references Green, K. Y., Ando, T., Balayan, M. S., Berke, T., Clarke, I. N., Estes, M. K., … Thiel, H. (2000). Taxonomy of the Caliciviruses. The Journal of Infectious Diseases, 181(s2), S322-S330. doi:10.1086/315591 es_ES
dc.description.references Van der Wilk, F., Dullemans, A. M., Verbeek, M., & Van den Heuvel, J. F. J. M. (1997). Nucleotide Sequence and Genomic Organization of Acyrthosiphon Pisum Virus. Virology, 238(2), 353-362. doi:10.1006/viro.1997.8835 es_ES
dc.description.references Urcuqui-Inchima, S., Haenni, A.-L., & Bernardi, F. (2001). Potyvirus proteins: a wealth of functions. Virus Research, 74(1-2), 157-175. doi:10.1016/s0168-1702(01)00220-9 es_ES
dc.description.references Chung, B. Y.-W., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences, 105(15), 5897-5902. doi:10.1073/pnas.0800468105 es_ES
dc.description.references Wei, T., Zhang, C., Hong, J., Xiong, R., Kasschau, K. D., Zhou, X., … Wang, A. (2010). Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO. PLoS Pathogens, 6(6), e1000962. doi:10.1371/journal.ppat.1000962 es_ES
dc.description.references Wen, R.-H., & Hajimorad, M. R. (2010). Mutational analysis of the putative pipo of soybean mosaic virus suggests disruption of PIPO protein impedes movement. Virology, 400(1), 1-7. doi:10.1016/j.virol.2010.01.022 es_ES
dc.description.references Vijayapalani, P., Maeshima, M., Nagasaki-Takekuchi, N., & Miller, W. A. (2012). Interaction of the Trans-Frame Potyvirus Protein P3N-PIPO with Host Protein PCaP1 Facilitates Potyvirus Movement. PLoS Pathogens, 8(4), e1002639. doi:10.1371/journal.ppat.1002639 es_ES
dc.description.references Lin, L., Luo, Z., Yan, F., Lu, Y., Zheng, H., & Chen, J. (2011). Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. Virus Genes, 43(1), 90-92. doi:10.1007/s11262-011-0596-6 es_ES
dc.description.references Choi, S. H., Hagiwara-Komoda, Y., Nakahara, K. S., Atsumi, G., Shimada, R., Hisa, Y., … Uyeda, I. (2013). Quantitative and Qualitative Involvement of P3N-PIPO in Overcoming Recessive Resistance against Clover Yellow Vein Virus in Pea Carrying the cyv1 Gene. Journal of Virology, 87(13), 7326-7337. doi:10.1128/jvi.00065-13 es_ES
dc.description.references Cuevas, J. M., Delaunay, A., Visser, J. C., Bellstedt, D. U., Jacquot, E., & Elena, S. F. (2012). Phylogeography and Molecular Evolution of Potato virus Y. PLoS ONE, 7(5), e37853. doi:10.1371/journal.pone.0037853 es_ES
dc.description.references Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340 es_ES
dc.description.references Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121 es_ES
dc.description.references Martin, D. P., Lemey, P., Lott, M., Moulton, V., Posada, D., & Lefeuvre, P. (2010). RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics, 26(19), 2462-2463. doi:10.1093/bioinformatics/btq467 es_ES
dc.description.references Ilardi, V., & Nicola-Negri, E. D. (2011). Genetically engineered resistance to Plum pox virus infection in herbaceous and stone fruit hosts. GM Crops, 2(1), 24-33. doi:10.4161/gmcr.2.1.15096 es_ES
dc.description.references Schubert, J., Fomitcheva, V., & Sztangret-Wiśniewska, J. (2007). Differentiation of Potato virus Y strains using improved sets of diagnostic PCR-primers. Journal of Virological Methods, 140(1-2), 66-74. doi:10.1016/j.jviromet.2006.10.017 es_ES
dc.description.references Ohshima, K., Tomitaka, Y., Wood, J. T., Minematsu, Y., Kajiyama, H., Tomimura, K., & Gibbs, A. J. (2007). Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination. Journal of General Virology, 88(1), 298-315. doi:10.1099/vir.0.82335-0 es_ES
dc.description.references Kosakovsky Pond, S. L., Frost, S. D. W., Grossman, Z., Gravenor, M. B., Richman, D. D., & Brown, A. J. L. (2006). Adaptation to Different Human Populations by HIV-1 Revealed by Codon-Based Analyses. PLoS Computational Biology, 2(6), e62. doi:10.1371/journal.pcbi.0020062 es_ES
dc.description.references Kosakovsky Pond, S. L., & Frost, S. D. W. (2005). Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection. Molecular Biology and Evolution, 22(5), 1208-1222. doi:10.1093/molbev/msi105 es_ES
dc.description.references Delport, W., Poon, A. F. Y., Frost, S. D. W., & Kosakovsky Pond, S. L. (2010). Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26(19), 2455-2457. doi:10.1093/bioinformatics/btq429 es_ES
dc.description.references Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. doi:10.1186/1471-2148-7-214 es_ES
dc.description.references Parker, J., Rambaut, A., & Pybus, O. G. (2008). Correlating viral phenotypes with phylogeny: Accounting for phylogenetic uncertainty. Infection, Genetics and Evolution, 8(3), 239-246. doi:10.1016/j.meegid.2007.08.001 es_ES
dc.description.references Wang, T. H., Donaldson, Y. K., Brettle, R. P., Bell, J. E., & Simmonds, P. (2001). Identification of Shared Populations of Human Immunodeficiency Virus Type 1 Infecting Microglia and Tissue Macrophages outside the Central Nervous System. Journal of Virology, 75(23), 11686-11699. doi:10.1128/jvi.75.23.11686-11699.2001 es_ES
dc.description.references Lafforgue, G., Tromas, N., Elena, S. F., & Zwart, M. P. (2012). Dynamics of the Establishment of Systemic Potyvirus Infection: Independent yet Cumulative Action of Primary Infection Sites. Journal of Virology, 86(23), 12912-12922. doi:10.1128/jvi.02207-12 es_ES
dc.description.references Gibbs, A. J., Ohshima, K., Phillips, M. J., & Gibbs, M. J. (2008). The Prehistory of Potyviruses: Their Initial Radiation Was during the Dawn of Agriculture. PLoS ONE, 3(6), e2523. doi:10.1371/journal.pone.0002523 es_ES
dc.description.references Glasa, M., Malinowski, T., Predajňa, L., Pupola, N., Dekena, D., Michalczuk, L., & Candresse, T. (2011). Sequence Variability, Recombination Analysis, and Specific Detection of the W Strain ofPlum pox virus. Phytopathology, 101(8), 980-985. doi:10.1094/phyto-12-10-0334 es_ES
dc.description.references Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2011). One Is Enough: In Vivo Effective Population Size Is Dose-Dependent for a Plant RNA Virus. PLoS Pathogens, 7(7), e1002122. doi:10.1371/journal.ppat.1002122 es_ES
dc.description.references Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2012). Effects of Potyvirus Effective Population Size in Inoculated Leaves on Viral Accumulation and the Onset of Symptoms. Journal of Virology, 86(18), 9737-9747. doi:10.1128/jvi.00909-12 es_ES
dc.description.references Agudelo-Romero, P., Carbonell, P., Perez-Amador, M. A., & Elena, S. F. (2008). Virus Adaptation by Manipulation of Host’s Gene Expression. PLoS ONE, 3(6), e2397. doi:10.1371/journal.pone.0002397 es_ES
dc.description.references Jenner, C. E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F., & Walsh, J. A. (2003). The Dual Role of the Potyvirus P3 Protein ofTurnip mosaic virusas a Symptom and Avirulence Determinant in Brassicas. Molecular Plant-Microbe Interactions, 16(9), 777-784. doi:10.1094/mpmi.2003.16.9.777 es_ES
dc.description.references Suehiro, N. (2004). An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. Journal of General Virology, 85(7), 2087-2098. doi:10.1099/vir.0.79825-0 es_ES
dc.description.references Kim, B. M., Suehiro, N., Natsuaki, T., Inukai, T., & Masuta, C. (2010). The P3 Protein ofTurnip mosaic virusCan Alone Induce Hypersensitive Response-Like Cell Death inArabidopsis thalianaCarryingTuNI. Molecular Plant-Microbe Interactions, 23(2), 144-152. doi:10.1094/mpmi-23-2-0144 es_ES
dc.description.references Hjulsager, C. K., Olsen, B. S., Jensen, D. M. K., Cordea, M. I., Krath, B. N., Johansen, I. E., & Lund, O. S. (2006). Multiple determinants in the coding region of Pea seed-borne mosaic virus P3 are involved in virulence against sbm-2 resistance. Virology, 355(1), 52-61. doi:10.1016/j.virol.2006.07.016 es_ES
dc.description.references Desbiez, C., Gal-On, A., Girard, M., Wipf-Scheibel, C., & Lecoq, H. (2003). Increase inZucchini yellow mosaic virusSymptom Severity in Tolerant Zucchini Cultivars Is Related to a Point Mutation in P3 Protein and Is Associated with a Loss of Relative Fitness on Susceptible Plants. Phytopathology, 93(12), 1478-1484. doi:10.1094/phyto.2003.93.12.1478 es_ES
dc.description.references Glasa, M., Svoboda, J., & Nováková, S. (2007). Analysis of the molecular and biological variability of Zucchini yellow mosaic virus isolates from Slovakia and Czech Republic. Virus Genes, 35(2), 415-421. doi:10.1007/s11262-007-0101-4 es_ES
dc.description.references Eggenberger, A. L., Hajimorad, M. R., & Hill, J. H. (2008). Gain of Virulence onRsv1-Genotype Soybean by an AvirulentSoybean mosaic virusRequires Concurrent Mutations in Both P3 and HC-Pro. Molecular Plant-Microbe Interactions, 21(7), 931-936. doi:10.1094/mpmi-21-7-0931 es_ES
dc.description.references WEN, R.-H., MAROOF, M. A. S., & HAJIMORAD, M. R. (2011). Amino acid changes in P3, and not the overlapping pipo-encoded protein, determine virulence of Soybean mosaic virus on functionally immune Rsv1-genotype soybean. Molecular Plant Pathology, 12(8), 799-807. doi:10.1111/j.1364-3703.2011.00714.x es_ES
dc.description.references Tan, Z. (2005). Mutations in Turnip mosaic virus genomes that have adapted to Raphanus sativus. Journal of General Virology, 86(2), 501-510. doi:10.1099/vir.0.80540-0 es_ES
dc.description.references Choi, I.-R. (2005). An internal RNA element in the P3 cistron of Wheat streak mosaic virus revealed by synonymous mutations that affect both movement and replication. Journal of General Virology, 86(9), 2605-2614. doi:10.1099/vir.0.81081-0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem