- -

The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez, Gerardo es_ES
dc.contributor.author Martinez, J. es_ES
dc.contributor.author Romeu, J es_ES
dc.contributor.author Garcia, J es_ES
dc.contributor.author Monforte Gilabert, Antonio José es_ES
dc.contributor.author Badenes, M.L. es_ES
dc.contributor.author Granell Richart, Antonio es_ES
dc.date.accessioned 2016-05-13T07:17:09Z
dc.date.available 2016-05-13T07:17:09Z
dc.date.issued 2014-05-19
dc.identifier.issn 1471-2229
dc.identifier.uri http://hdl.handle.net/10251/64004
dc.description.abstract Background: The improvement of fruit aroma is currently one of the most sought-after objectives in peach breeding programs. To better characterize and assess the genetic potential for increasing aroma quality by breeding, a quantity trait locus (QTL) analysis approach was carried out in an F-1 population segregating largely for fruit traits. Results: Linkage maps were constructed using the IPSC peach 9 K Infinium (R) II array, rendering dense genetic maps, except in the case of certain chromosomes, probably due to identity-by-descent of those chromosomes in the parental genotypes. The variability in compounds associated with aroma was analyzed by a metabolomic approach based on GC-MS to profile 81 volatiles across the population from two locations. Quality-related traits were also studied to assess possible pleiotropic effects. Correlation-based analysis of the volatile dataset revealed that the peach volatilome is organized into modules formed by compounds from the same biosynthetic origin or which share similar chemical structures. QTL mapping showed clustering of volatile QTL included in the same volatile modules, indicating that some are subjected to joint genetic control. The monoterpene module is controlled by a unique locus at the top of LG4, a locus previously shown to affect the levels of two terpenoid compounds. At the bottom of LG4, a locus controlling several volatiles but also melting/non-melting and maturity-related traits was found, suggesting putative pleiotropic effects. In addition, two novel loci controlling lactones and esters in linkage groups 5 and 6 were discovered. Conclusions: The results presented here give light on the mode of inheritance of the peach volatilome confirming previously loci controlling the aroma of peach but also identifying novel ones. es_ES
dc.description.sponsorship GS has financial support from INTA (Instituto Nacional de Tecnologia Agropecuaria, Argentina). HS-SPME-GC-MS analyses were performed at the Metabolomic lab facilities at the IBMCP (CSIC) in Spain. This project has been funded by the Ministry of Economy and Competitivity grant AGL2010-20595. en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BMC Plant Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.title The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/1471-2229-14-137
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2010-20595/ES/PROGRAMAS DE MEJORA DEL ALBARICOQUERO Y MELOCOTONERO PARA LA OBTENCION Y SELECCION DE NUEVAS VARIEDADES DE ALTA CALIDAD. DESARROLLO DE HERRAMIENTAS GENETICAS Y GENOMICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Sánchez, G.; Martinez, J.; Romeu, J.; Garcia, J.; Monforte Gilabert, AJ.; Badenes, M.; Granell Richart, A. (2014). The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population. BMC Plant Biology. 14(137):1-16. https://doi.org/10.1186/1471-2229-14-137 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/1471-2229-14-137 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 137 es_ES
dc.relation.senia 282433 es_ES
dc.identifier.pmid 24885290 en_EN
dc.identifier.pmcid PMC4067740 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Instituto Nacional de Tecnologia Agropecuaria es_ES
dc.description.references Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507 es_ES
dc.description.references Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 7(6), e38992. doi:10.1371/journal.pone.0038992 es_ES
dc.description.references Eduardo, I., Chietera, G., Bassi, D., Rossini, L., & Vecchietti, A. (2010). Identification of key odor volatile compounds in the essential oil of nine peach accessions. Journal of the Science of Food and Agriculture, 90(7), 1146-1154. doi:10.1002/jsfa.3932 es_ES
dc.description.references Derail, C., Hofmann, T., & Schieberle, P. (1999). Differences in Key Odorants of Handmade Juice of Yellow-Flesh Peaches (Prunus persicaL.) Induced by the Workup Procedure. Journal of Agricultural and Food Chemistry, 47(11), 4742-4745. doi:10.1021/jf990459g es_ES
dc.description.references Greger, V., & Schieberle, P. (2007). Characterization of the Key Aroma Compounds in Apricots (Prunus armeniaca) by Application of the Molecular Sensory Science Concept. Journal of Agricultural and Food Chemistry, 55(13), 5221-5228. doi:10.1021/jf0705015 es_ES
dc.description.references Zhang, B., Shen, J., Wei, W., Xi, W., Xu, C.-J., Ferguson, I., & Chen, K. (2010). Expression of Genes Associated with Aroma Formation Derived from the Fatty Acid Pathway during Peach Fruit Ripening. Journal of Agricultural and Food Chemistry, 58(10), 6157-6165. doi:10.1021/jf100172e es_ES
dc.description.references Aubert, C., Günata, Z., Ambid, C., & Baumes, R. (2003). Changes in Physicochemical Characteristics and Volatile Constituents of Yellow- and White-Fleshed Nectarines during Maturation and Artificial Ripening. Journal of Agricultural and Food Chemistry, 51(10), 3083-3091. doi:10.1021/jf026153i es_ES
dc.description.references XI, W.-P., ZHANG, B., LIANG, L., SHEN, J.-Y., WEI, W.-W., XU, C.-J., … CHEN, K.-S. (2011). Postharvest temperature influences volatile lactone production via regulation of acyl-CoA oxidases in peach fruit. Plant, Cell & Environment, 35(3), 534-545. doi:10.1111/j.1365-3040.2011.02433.x es_ES
dc.description.references Brandi, F., Bar, E., Mourgues, F., Horváth, G., Turcsi, E., Giuliano, G., … Rosati, C. (2011). Study of «Redhaven» peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology, 11(1), 24. doi:10.1186/1471-2229-11-24 es_ES
dc.description.references Sánchez, G., Venegas-Calerón, M., Salas, J. J., Monforte, A., Badenes, M. L., & Granell, A. (2013). An integrative «omics» approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genomics, 14(1), 343. doi:10.1186/1471-2164-14-343 es_ES
dc.description.references Verde, I., Abbott, A. G., Scalabrin, S., Jung, S., Shu, S., … Grimwood, J. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 45(5), 487-494. doi:10.1038/ng.2586 es_ES
dc.description.references Verde, I., Bassil, N., Scalabrin, S., Gilmore, B., Lawley, C. T., Gasic, K., … Peace, C. (2012). Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm. PLoS ONE, 7(4), e35668. doi:10.1371/journal.pone.0035668 es_ES
dc.description.references Zorrilla-Fontanesi, Y., Rambla, J.-L., Cabeza, A., Medina, J. J., Sánchez-Sevilla, J. F., Valpuesta, V., … Amaya, I. (2012). Genetic Analysis of Strawberry Fruit Aroma and Identification of O-Methyltransferase FaOMT as the Locus Controlling Natural Variation in Mesifurane Content. Plant Physiology, 159(2), 851-870. doi:10.1104/pp.111.188318 es_ES
dc.description.references Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086 es_ES
dc.description.references Romeu, J. F., Monforte, A. J., Sánchez, G., Granell, A., García-Brunton, J., Badenes, M. L., & Ríos, G. (2014). Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biology, 14(1), 52. doi:10.1186/1471-2229-14-52 es_ES
dc.description.references Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., & Newburg, L. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1(2), 174-181. doi:10.1016/0888-7543(87)90010-3 es_ES
dc.description.references Voorrips, R. E. (2002). MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93(1), 77-78. doi:10.1093/jhered/93.1.77 es_ES
dc.description.references Tikunov, Y., Lommen, A., de Vos, C. H. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., & Bovy, A. G. (2005). A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. Plant Physiology, 139(3), 1125-1137. doi:10.1104/pp.105.068130 es_ES
dc.description.references Shannon, P. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11), 2498-2504. doi:10.1101/gr.1239303 es_ES
dc.description.references Yang, J., Hu, C., Hu, H., Yu, R., Xia, Z., Ye, X., & Zhu, J. (2008). QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 24(5), 721-723. doi:10.1093/bioinformatics/btm494 es_ES
dc.description.references Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE, 6(5), e19379. doi:10.1371/journal.pone.0019379 es_ES
dc.description.references Quilot, B., Wu, B. H., Kervella, J., G�nard, M., Foulongne, M., & Moreau, K. (2004). QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theoretical and Applied Genetics, 109(4), 884-897. doi:10.1007/s00122-004-1703-z es_ES
dc.description.references Dirlewanger, E., Quero-García, J., Le Dantec, L., Lambert, P., Ruiz, D., Dondini, L., … Arús, P. (2012). Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity, 109(5), 280-292. doi:10.1038/hdy.2012.38 es_ES
dc.description.references Dirlewanger, E., Graziano, E., Joobeur, T., Garriga-Caldere, F., Cosson, P., Howad, W., & Arus, P. (2004). Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences, 101(26), 9891-9896. doi:10.1073/pnas.0307937101 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem