Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez, Gerardo | es_ES |
dc.contributor.author | Martinez, J. | es_ES |
dc.contributor.author | Romeu, J | es_ES |
dc.contributor.author | Garcia, J | es_ES |
dc.contributor.author | Monforte Gilabert, Antonio José | es_ES |
dc.contributor.author | Badenes, M.L. | es_ES |
dc.contributor.author | Granell Richart, Antonio | es_ES |
dc.date.accessioned | 2016-05-13T07:17:09Z | |
dc.date.available | 2016-05-13T07:17:09Z | |
dc.date.issued | 2014-05-19 | |
dc.identifier.issn | 1471-2229 | |
dc.identifier.uri | http://hdl.handle.net/10251/64004 | |
dc.description.abstract | Background: The improvement of fruit aroma is currently one of the most sought-after objectives in peach breeding programs. To better characterize and assess the genetic potential for increasing aroma quality by breeding, a quantity trait locus (QTL) analysis approach was carried out in an F-1 population segregating largely for fruit traits. Results: Linkage maps were constructed using the IPSC peach 9 K Infinium (R) II array, rendering dense genetic maps, except in the case of certain chromosomes, probably due to identity-by-descent of those chromosomes in the parental genotypes. The variability in compounds associated with aroma was analyzed by a metabolomic approach based on GC-MS to profile 81 volatiles across the population from two locations. Quality-related traits were also studied to assess possible pleiotropic effects. Correlation-based analysis of the volatile dataset revealed that the peach volatilome is organized into modules formed by compounds from the same biosynthetic origin or which share similar chemical structures. QTL mapping showed clustering of volatile QTL included in the same volatile modules, indicating that some are subjected to joint genetic control. The monoterpene module is controlled by a unique locus at the top of LG4, a locus previously shown to affect the levels of two terpenoid compounds. At the bottom of LG4, a locus controlling several volatiles but also melting/non-melting and maturity-related traits was found, suggesting putative pleiotropic effects. In addition, two novel loci controlling lactones and esters in linkage groups 5 and 6 were discovered. Conclusions: The results presented here give light on the mode of inheritance of the peach volatilome confirming previously loci controlling the aroma of peach but also identifying novel ones. | es_ES |
dc.description.sponsorship | GS has financial support from INTA (Instituto Nacional de Tecnologia Agropecuaria, Argentina). HS-SPME-GC-MS analyses were performed at the Metabolomic lab facilities at the IBMCP (CSIC) in Spain. This project has been funded by the Ministry of Economy and Competitivity grant AGL2010-20595. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | BioMed Central | es_ES |
dc.relation.ispartof | BMC Plant Biology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.title | The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/1471-2229-14-137 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2010-20595/ES/PROGRAMAS DE MEJORA DEL ALBARICOQUERO Y MELOCOTONERO PARA LA OBTENCION Y SELECCION DE NUEVAS VARIEDADES DE ALTA CALIDAD. DESARROLLO DE HERRAMIENTAS GENETICAS Y GENOMICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Sánchez, G.; Martinez, J.; Romeu, J.; Garcia, J.; Monforte Gilabert, AJ.; Badenes, M.; Granell Richart, A. (2014). The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population. BMC Plant Biology. 14(137):1-16. https://doi.org/10.1186/1471-2229-14-137 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1186/1471-2229-14-137 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 137 | es_ES |
dc.relation.senia | 282433 | es_ES |
dc.identifier.pmid | 24885290 | en_EN |
dc.identifier.pmcid | PMC4067740 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Instituto Nacional de Tecnologia Agropecuaria | es_ES |
dc.description.references | Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507 | es_ES |
dc.description.references | Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 7(6), e38992. doi:10.1371/journal.pone.0038992 | es_ES |
dc.description.references | Eduardo, I., Chietera, G., Bassi, D., Rossini, L., & Vecchietti, A. (2010). Identification of key odor volatile compounds in the essential oil of nine peach accessions. Journal of the Science of Food and Agriculture, 90(7), 1146-1154. doi:10.1002/jsfa.3932 | es_ES |
dc.description.references | Derail, C., Hofmann, T., & Schieberle, P. (1999). Differences in Key Odorants of Handmade Juice of Yellow-Flesh Peaches (Prunus persicaL.) Induced by the Workup Procedure. Journal of Agricultural and Food Chemistry, 47(11), 4742-4745. doi:10.1021/jf990459g | es_ES |
dc.description.references | Greger, V., & Schieberle, P. (2007). Characterization of the Key Aroma Compounds in Apricots (Prunus armeniaca) by Application of the Molecular Sensory Science Concept. Journal of Agricultural and Food Chemistry, 55(13), 5221-5228. doi:10.1021/jf0705015 | es_ES |
dc.description.references | Zhang, B., Shen, J., Wei, W., Xi, W., Xu, C.-J., Ferguson, I., & Chen, K. (2010). Expression of Genes Associated with Aroma Formation Derived from the Fatty Acid Pathway during Peach Fruit Ripening. Journal of Agricultural and Food Chemistry, 58(10), 6157-6165. doi:10.1021/jf100172e | es_ES |
dc.description.references | Aubert, C., Günata, Z., Ambid, C., & Baumes, R. (2003). Changes in Physicochemical Characteristics and Volatile Constituents of Yellow- and White-Fleshed Nectarines during Maturation and Artificial Ripening. Journal of Agricultural and Food Chemistry, 51(10), 3083-3091. doi:10.1021/jf026153i | es_ES |
dc.description.references | XI, W.-P., ZHANG, B., LIANG, L., SHEN, J.-Y., WEI, W.-W., XU, C.-J., … CHEN, K.-S. (2011). Postharvest temperature influences volatile lactone production via regulation of acyl-CoA oxidases in peach fruit. Plant, Cell & Environment, 35(3), 534-545. doi:10.1111/j.1365-3040.2011.02433.x | es_ES |
dc.description.references | Brandi, F., Bar, E., Mourgues, F., Horváth, G., Turcsi, E., Giuliano, G., … Rosati, C. (2011). Study of «Redhaven» peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology, 11(1), 24. doi:10.1186/1471-2229-11-24 | es_ES |
dc.description.references | Sánchez, G., Venegas-Calerón, M., Salas, J. J., Monforte, A., Badenes, M. L., & Granell, A. (2013). An integrative «omics» approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genomics, 14(1), 343. doi:10.1186/1471-2164-14-343 | es_ES |
dc.description.references | Verde, I., Abbott, A. G., Scalabrin, S., Jung, S., Shu, S., … Grimwood, J. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 45(5), 487-494. doi:10.1038/ng.2586 | es_ES |
dc.description.references | Verde, I., Bassil, N., Scalabrin, S., Gilmore, B., Lawley, C. T., Gasic, K., … Peace, C. (2012). Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm. PLoS ONE, 7(4), e35668. doi:10.1371/journal.pone.0035668 | es_ES |
dc.description.references | Zorrilla-Fontanesi, Y., Rambla, J.-L., Cabeza, A., Medina, J. J., Sánchez-Sevilla, J. F., Valpuesta, V., … Amaya, I. (2012). Genetic Analysis of Strawberry Fruit Aroma and Identification of O-Methyltransferase FaOMT as the Locus Controlling Natural Variation in Mesifurane Content. Plant Physiology, 159(2), 851-870. doi:10.1104/pp.111.188318 | es_ES |
dc.description.references | Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086 | es_ES |
dc.description.references | Romeu, J. F., Monforte, A. J., Sánchez, G., Granell, A., García-Brunton, J., Badenes, M. L., & Ríos, G. (2014). Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biology, 14(1), 52. doi:10.1186/1471-2229-14-52 | es_ES |
dc.description.references | Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., & Newburg, L. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1(2), 174-181. doi:10.1016/0888-7543(87)90010-3 | es_ES |
dc.description.references | Voorrips, R. E. (2002). MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93(1), 77-78. doi:10.1093/jhered/93.1.77 | es_ES |
dc.description.references | Tikunov, Y., Lommen, A., de Vos, C. H. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., & Bovy, A. G. (2005). A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. Plant Physiology, 139(3), 1125-1137. doi:10.1104/pp.105.068130 | es_ES |
dc.description.references | Shannon, P. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11), 2498-2504. doi:10.1101/gr.1239303 | es_ES |
dc.description.references | Yang, J., Hu, C., Hu, H., Yu, R., Xia, Z., Ye, X., & Zhu, J. (2008). QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 24(5), 721-723. doi:10.1093/bioinformatics/btm494 | es_ES |
dc.description.references | Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE, 6(5), e19379. doi:10.1371/journal.pone.0019379 | es_ES |
dc.description.references | Quilot, B., Wu, B. H., Kervella, J., G�nard, M., Foulongne, M., & Moreau, K. (2004). QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theoretical and Applied Genetics, 109(4), 884-897. doi:10.1007/s00122-004-1703-z | es_ES |
dc.description.references | Dirlewanger, E., Quero-García, J., Le Dantec, L., Lambert, P., Ruiz, D., Dondini, L., … Arús, P. (2012). Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity, 109(5), 280-292. doi:10.1038/hdy.2012.38 | es_ES |
dc.description.references | Dirlewanger, E., Graziano, E., Joobeur, T., Garriga-Caldere, F., Cosson, P., Howad, W., & Arus, P. (2004). Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences, 101(26), 9891-9896. doi:10.1073/pnas.0307937101 | es_ES |