- -

Electrochemical bioassay for the detection of TNF-a using magnetic beads and disposable screen-printed array of electrodes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrochemical bioassay for the detection of TNF-a using magnetic beads and disposable screen-printed array of electrodes

Mostrar el registro completo del ítem

Bettazzi, F.; Enayati, L.; Campos Sánchez, I.; Motaghed, R.; Mascini, M.; Palchetti, I. (2013). Electrochemical bioassay for the detection of TNF-a using magnetic beads and disposable screen-printed array of electrodes. Bioanalysis. 5(1):11-19. doi:10.4155/BIO.12.293

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64013

Ficheros en el ítem

Metadatos del ítem

Título: Electrochemical bioassay for the detection of TNF-a using magnetic beads and disposable screen-printed array of electrodes
Autor: Bettazzi, F. Enayati, L. Campos Sánchez, Inmaculada Motaghed, R. Mascini, M. Palchetti, I.
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
In this study we have developed an electrochemical bioassay for the analysis of TNF-a, coupling magnetic beads with disposable electrochemical platforms. TNF-a is a pro inflammatory cytokine that participates in the ...[+]
Palabras clave: Electrochemical biosensor , TNF-a
Derechos de uso: Cerrado
Fuente:
Bioanalysis. (issn: 1757-6180 )
DOI: 10.4155/BIO.12.293
Editorial:
Future Science
Versión del editor: http://dx.doi.org/10.4155/BIO.12.293
Tipo: Artículo

References

Wang, J., Liu, G., Engelhard, M. H., & Lin, Y. (2006). Sensitive Immunoassay of a Biomarker Tumor Necrosis Factor-α Based on Poly(guanine)-Functionalized Silica Nanoparticle Label. Analytical Chemistry, 78(19), 6974-6979. doi:10.1021/ac060809f

Yuan, L., Hua, X., Wu, Y., Pan, X., & Liu, S. (2011). Polymer-Functionalized Silica Nanosphere Labels for Ultrasensitive Detection of Tumor Necrosis Factor-alpha. Analytical Chemistry, 83(17), 6800-6809. doi:10.1021/ac201558w

De Kossodo, S., Houba, V., & Grau, G. . (1995). Assaying tumor necrosis factor concentrations in human serum a WHO International Collaborative Study. Journal of Immunological Methods, 182(1), 107-114. doi:10.1016/0022-1759(95)00028-9 [+]
Wang, J., Liu, G., Engelhard, M. H., & Lin, Y. (2006). Sensitive Immunoassay of a Biomarker Tumor Necrosis Factor-α Based on Poly(guanine)-Functionalized Silica Nanoparticle Label. Analytical Chemistry, 78(19), 6974-6979. doi:10.1021/ac060809f

Yuan, L., Hua, X., Wu, Y., Pan, X., & Liu, S. (2011). Polymer-Functionalized Silica Nanosphere Labels for Ultrasensitive Detection of Tumor Necrosis Factor-alpha. Analytical Chemistry, 83(17), 6800-6809. doi:10.1021/ac201558w

De Kossodo, S., Houba, V., & Grau, G. . (1995). Assaying tumor necrosis factor concentrations in human serum a WHO International Collaborative Study. Journal of Immunological Methods, 182(1), 107-114. doi:10.1016/0022-1759(95)00028-9

Palladino, M. A., Bahjat, F. R., Theodorakis, E. A., & Moldawer, L. L. (2003). Anti-TNF-α therapies: the next generation. Nature Reviews Drug Discovery, 2(9), 736-746. doi:10.1038/nrd1175

Corti, A., Poiesi, C., Merli, S., & Cassani, G. (1994). Tumor Necrosis Factor (TNF) α quantification by ELISA and bioassay: effects of TNFα-soluble TNF receptor (p55) complex dissociation during assay incubations. Journal of Immunological Methods, 177(1-2), 191-198. doi:10.1016/0022-1759(94)90156-2

Bosnjakovic, A., Mishra, M. K., Han, H. J., Romero, R., & Kannan, R. M. (2012). A dendrimer-based immunosensor for improved capture and detection of tumor necrosis factor-α cytokine. Analytica Chimica Acta, 720, 118-125. doi:10.1016/j.aca.2012.01.017

Laing, S., Hernandez-Santana, A., Sassmannshausen, J., Asquith, D. L., McInnes, I. B., Faulds, K., & Graham, D. (2011). Quantitative Detection of Human Tumor Necrosis Factor α by a Resonance Raman Enzyme-Linked Immunosorbent Assay. Analytical Chemistry, 83(1), 297-302. doi:10.1021/ac1024039

Renberg, B., Nordin, J., Merca, A., Uhlén, M., Feldwisch, J., Nygren, P.-Å., & Eriksson Karlström, A. (2007). Affibody Molecules in Protein Capture Microarrays:  Evaluation of Multidomain Ligands and Different Detection Formats. Journal of Proteome Research, 6(1), 171-179. doi:10.1021/pr060316r

Herrmann, M., Veres, T., & Tabrizian, M. (2008). Quantification of Low-Picomolar Concentrations of TNF-α in Serum Using the Dual-Network Microfluidic ELISA Platform. Analytical Chemistry, 80(13), 5160-5167. doi:10.1021/ac800427z

Hurst, G. B., Buchanan, M. V., Foote, L. J., & Kennel, S. J. (1999). Analysis for TNF-α Using Solid-Phase Affinity Capture with Radiolabel and MALDI-MS Detection. Analytical Chemistry, 71(20), 4727-4733. doi:10.1021/ac9905423

Luo, L., Zhang, Z., & Ma, L. (2005). Determination of recombinant human tumor necrosis factor-α in serum by chemiluminescence imaging. Analytica Chimica Acta, 539(1-2), 277-282. doi:10.1016/j.aca.2005.02.046

Law, W.-C., Yong, K.-T., Baev, A., & Prasad, P. N. (2011). Sensitivity Improved Surface Plasmon Resonance Biosensor for Cancer Biomarker Detection Based on Plasmonic Enhancement. ACS Nano, 5(6), 4858-4864. doi:10.1021/nn2009485

Battaglia, T. M., Masson, J.-F., Sierks, M. R., Beaudoin, S. P., Rogers, J., Foster, K. N., … Booksh, K. S. (2005). Quantification of Cytokines Involved in Wound Healing Using Surface Plasmon Resonance. Analytical Chemistry, 77(21), 7016-7023. doi:10.1021/ac050568w

Yin, Z., Liu, Y., Jiang, L.-P., & Zhu, J.-J. (2011). Electrochemical immunosensor of tumor necrosis factor α based on alkaline phosphatase functionalized nanospheres. Biosensors and Bioelectronics, 26(5), 1890-1894. doi:10.1016/j.bios.2010.03.025

Kerman, K., Saito, M., Morita, Y., Takamura, Y., Ozsoz, M., & Tamiya, E. (2004). Electrochemical Coding of Single-Nucleotide Polymorphisms By Monobase-Modified Gold Nanoparticles. Analytical Chemistry, 76(7), 1877-1884. doi:10.1021/ac0351872

Shelbourne, M., Chen, X., Brown, T., & El-Sagheer, A. H. (2011). Fast copper-free click DNA ligation by the ring-strain promoted alkyne-azide cycloaddition reaction. Chemical Communications, 47(22), 6257. doi:10.1039/c1cc10743g

Centi, S., Laschi, S., Fránek, M., & Mascini, M. (2005). A disposable immunomagnetic electrochemical sensor based on functionalised magnetic beads and carbon-based screen-printed electrodes (SPCEs) for the detection of polychlorinated biphenyls (PCBs). Analytica Chimica Acta, 538(1-2), 205-212. doi:10.1016/j.aca.2005.01.073

Conzuelo, F., Gamella, M., Campuzano, S., Reviejo, A. J., & Pingarrón, J. M. (2012). Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk. Analytica Chimica Acta, 737, 29-36. doi:10.1016/j.aca.2012.05.051

Laschi, S., Miranda-Castro, R., González-Fernández, E., Palchetti, I., Reymond, F., Rossier, J. S., & Marrazza, G. (2010). A new gravity-driven microfluidic-based electrochemical assay coupled to magnetic beads for nucleic acid detection. ELECTROPHORESIS, 31(22), 3727-3736. doi:10.1002/elps.201000288

Laschi, S., Palchetti, I., Marrazza, G., & Mascini, M. (2006). Development of disposable low density screen-printed electrode arrays for simultaneous electrochemical measurements of the hybridisation reaction. Journal of Electroanalytical Chemistry, 593(1-2), 211-218. doi:10.1016/j.jelechem.2006.04.015

Centi, S., Stoica, A. I., Laschi, S., & Mascini, M. (2010). Development of an Electrochemical Immunoassay Based on the Use of an Eight-Electrodes Screen-Printed Array Coupled with Magnetic Beads for the Detection of Antimicrobial Sulfonamides in Honey. Electroanalysis, 22(16), 1881-1888. doi:10.1002/elan.200900618

BERTI, F., LASCHI, S., PALCHETTI, I., ROSSIER, J., REYMOND, F., MASCINI, M., & MARRAZZA, G. (2009). Microfluidic-based electrochemical genosensor coupled to magnetic beads for hybridization detection. Talanta, 77(3), 971-978. doi:10.1016/j.talanta.2008.07.064

Centi, S., Silva, E., Laschi, S., Palchetti, I., & Mascini, M. (2007). Polychlorinated biphenyls (PCBs) detection in milk samples by an electrochemical magneto-immunosensor (EMI) coupled to solid-phase extraction (SPE) and disposable low-density arrays. Analytica Chimica Acta, 594(1), 9-16. doi:10.1016/j.aca.2007.04.064

Centi, S., Messina, G., Tombelli, S., Palchetti, I., & Mascini, M. (2008). Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads. Biosensors and Bioelectronics, 23(11), 1602-1609. doi:10.1016/j.bios.2008.01.020

PALECEK, E., & FOJTA, M. (2007). Magnetic beads as versatile tools for electrochemical DNA and protein biosensing. Talanta, 74(3), 276-290. doi:10.1016/j.talanta.2007.08.020

Cai, F., Li, C.-R., Wu, J.-L., Chen, J.-G., Liu, C., Min, Q., … Chen, J.-H. (2006). Theaflavin Ameliorates Cerebral Ischemia-Reperfusion Injury in Rats Through Its Anti-Inflammatory Effect and Modulation of STAT-1. Mediators of Inflammation, 2006, 1-9. doi:10.1155/mi/2006/30490

Pantsulaia, I., Trofimov, S., Kobyliansky, E., & Livshits, G. (2002). GENETIC AND ENVIRONMENTAL INFLUENCES ON IL-6 AND TNF-α PLASMA LEVELS IN APPARENTLY HEALTHY GENERAL POPULATION. Cytokine, 19(3), 138-146. doi:10.1006/cyto.2002.1959

Centi, S., Bonel Sanmartin, L., Tombelli, S., Palchetti, I., & Mascini, M. (2009). Detection of C Reactive Protein (CRP) in Serum by an Electrochemical Aptamer-Based Sandwich Assay. Electroanalysis, 21(11), 1309-1315. doi:10.1002/elan.200804560

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem