- -

Transient absorption spectroscopy and photochemical reactivity of CAU-8

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Transient absorption spectroscopy and photochemical reactivity of CAU-8

Show full item record

Baldovi, HG.; Krüger, M.; Reinsch, H.; Alvaro Rodríguez, MM.; Stock, N.; García Gómez, H. (2015). Transient absorption spectroscopy and photochemical reactivity of CAU-8. Journal of Materials Chemistry C. 3(15):3607-3613. doi:10.1039/C4TC02518K

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64020

Files in this item

Item Metadata

Title: Transient absorption spectroscopy and photochemical reactivity of CAU-8
Author: Baldovi, Herme G. Krüger, Martin Reinsch, Helge Alvaro Rodríguez, Maria Mercedes Stock, Norbert García Gómez, Hermenegildo
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] CAU-8 is a metal organic framework with the composition [Al(OH)(BPDC)] (BPDC: 4,4'-benzophenone dicarboxylate) whose structure is constituted by chains of corner-sharing AlO6 octahedra connected by BPDC linkers, giving ...[+]
Subjects: CAU-8 , Transient absorption spectrum , Photoreactivity metal org framework
Copyrigths: Reserva de todos los derechos
Source:
Journal of Materials Chemistry C. (issn: 2050-7526 ) (eissn: 2050-7534 )
DOI: 10.1039/C4TC02518K
Publisher:
Royal Society of Chemistry
Thanks:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ 2012/32315) is gratefully acknowledged. We also thank the Generalitat Valenciana for financial assistance (Prometeo 2012/2013). ...[+]
Type: Artículo

References

A. Gilbert and J. E.Baggot, Essentials of Molecular Photochemistry, CRC, Boca Raton, 1991

N. J. Turro , V.Ramamrthy and J. C.Scaiano, Principles of Organic Photochemistry, University Science Books, New York, 2009

N. J. Turro , J. C.Scaiano and V.Ramamurthy, Principles of Organic Photochemistry. An Introduction, 2008 [+]
A. Gilbert and J. E.Baggot, Essentials of Molecular Photochemistry, CRC, Boca Raton, 1991

N. J. Turro , V.Ramamrthy and J. C.Scaiano, Principles of Organic Photochemistry, University Science Books, New York, 2009

N. J. Turro , J. C.Scaiano and V.Ramamurthy, Principles of Organic Photochemistry. An Introduction, 2008

V. Ramamurthy , Photochemistry in Organized and Confined Media, Wiley, New York, 1995

Avnir, D., Johnston, L. J., de Mayo, P., & Wong, S. K. (1981). Surface photochemistry: radical pair combination on a silica gel surface and in micelles. Journal of the Chemical Society, Chemical Communications, (18), 958. doi:10.1039/c39810000958

Bauer, R. K., Borenstein, R., De Mayo, P., Okada, K., Rafalska, M., Ware, W. R., & Wu, K. C. (1982). Surface photochemistry: translational motion of organic molecules adsorbed on silica gel and its consequences. Journal of the American Chemical Society, 104(17), 4635-4644. doi:10.1021/ja00381a022

De Mayo, P., Nakamura, A., Tsang, P. W. K., & Wong, S. K. (1982). Surface photochemistry: deviation of the course of reaction in benzoin ether photolysis by adsorption on silica gel. Journal of the American Chemical Society, 104(24), 6824-6825. doi:10.1021/ja00388a078

De Mayo, P., Okada, K., Rafalska, M., Weedon, A. C., & Wong, G. S. K. (1981). Surface photochemistry: the photodimerisation of acenaphthylene on dry silica gel. Journal of the Chemical Society, Chemical Communications, (16), 820. doi:10.1039/c39810000820

Johnston, L. J., de Mayo, P., & Wong, S. K. (1982). Surface photochemistry: evidence for rotational and translational movement of cyanopropyl radicals on a silica gel surface. Journal of the Chemical Society, Chemical Communications, (19), 1106. doi:10.1039/c39820001106

Alvaro, M., Fornés, V., García, S., García, H., & Scaiano, J. C. (1998). Intrazeolite Photochemistry. 20. Characterization of Highly Luminescent Europium Complexes inside Zeolites. The Journal of Physical Chemistry B, 102(44), 8744-8750. doi:10.1021/jp980669g

Alvaro, M., García, H., García, S., Márquez, F., & Scaiano, J. C. (1997). Intrazeolite Photochemistry. 17. Zeolites as Electron Donors:  Photolysis of Methylviologen Incorporated within Zeolites. The Journal of Physical Chemistry B, 101(16), 3043-3051. doi:10.1021/jp9628850

Scaiano, J. C., & García, H. (1999). Intrazeolite Photochemistry:  Toward Supramolecular Control of Molecular Photochemistry. Accounts of Chemical Research, 32(9), 783-793. doi:10.1021/ar9702536

Hashimoto, S. (2011). Optical Spectroscopy and Microscopy Studies on the Spatial Distribution and Reaction Dynamics in Zeolites. The Journal of Physical Chemistry Letters, 2(5), 509-519. doi:10.1021/jz101572u

Hashimoto, S., Moon, H. R., & Yoon, K. B. (2007). Optical microscopy study of zeolite-dye composite materials. Microporous and Mesoporous Materials, 101(1-2), 10-18. doi:10.1016/j.micromeso.2006.12.010

Hashimoto, S., Uehara, K., Sogawa, K., Takada, M., & Fukumura, H. (2006). Application of time- and space-resolved fluorescence spectroscopy to the distribution of guest species into micrometer-sized zeolite crystals. Physical Chemistry Chemical Physics, 8(12), 1451. doi:10.1039/b513832a

Eddaoudi, M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208

Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M., & Yaghi, O. M. (2001). Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Accounts of Chemical Research, 34(4), 319-330. doi:10.1021/ar000034b

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Janiak, C. (2003). Engineering coordination polymers towards applications. Dalton Transactions, (14), 2781. doi:10.1039/b305705b

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610

Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650

Allendorf, M. D., Bauer, C. A., Bhakta, R. K., & Houk, R. J. T. (2009). Luminescent metal–organic frameworks. Chemical Society Reviews, 38(5), 1330. doi:10.1039/b802352m

Cui, Y., Yue, Y., Qian, G., & Chen, B. (2011). Luminescent Functional Metal–Organic Frameworks. Chemical Reviews, 112(2), 1126-1162. doi:10.1021/cr200101d

Silva, C. G., Corma, A., & García, H. (2010). Metal–organic frameworks as semiconductors. Journal of Materials Chemistry, 20(16), 3141. doi:10.1039/b924937k

Kent, C. A., Mehl, B. P., Ma, L., Papanikolas, J. M., Meyer, T. J., & Lin, W. (2010). Energy Transfer Dynamics in Metal−Organic Frameworks. Journal of the American Chemical Society, 132(37), 12767-12769. doi:10.1021/ja102804s

Mahata, P., Madras, G., & Natarajan, S. (2006). Novel Photocatalysts for the Decomposition of Organic Dyes Based on Metal-Organic Framework Compounds. The Journal of Physical Chemistry B, 110(28), 13759-13768. doi:10.1021/jp0622381

Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003

De Miguel, M., Ragon, F., Devic, T., Serre, C., Horcajada, P., & García, H. (2012). Evidence of Photoinduced Charge Separation in the Metal-Organic Framework MIL-125(Ti)-NH2. ChemPhysChem, 13(16), 3651-3654. doi:10.1002/cphc.201200411

Lopez, H. A., Dhakshinamoorthy, A., Ferrer, B., Atienzar, P., Alvaro, M., & Garcia, H. (2011). Photochemical Response of Commercial MOFs: Al2(BDC)3 and Its Use As Active Material in Photovoltaic Devices. The Journal of Physical Chemistry C, 115(45), 22200-22206. doi:10.1021/jp206919m

Tachikawa, T., Choi, J. R., Fujitsuka, M., & Majima, T. (2008). Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides. The Journal of Physical Chemistry C, 112(36), 14090-14101. doi:10.1021/jp803620v

Beckett, A., & Porter, G. (1963). Primary photochemical processes in aromatic molecules. Part 9.—Photochemistry of benzophenone in solution. Trans. Faraday Soc., 59(0), 2038-2050. doi:10.1039/tf9635902038

Boscá, F., Miranda, M. A., Carganico, G., & Mauleon, D. (1994). PHOTOCHEMICAL AND PHOTOBIOLOGICAL PROPERTIES OF KETOPROFEN ASSOCIATED WITH THE BENZOPHENONE CHROMOPHORE. Photochemistry and Photobiology, 60(2), 96-101. doi:10.1111/j.1751-1097.1994.tb05073.x

Kazanis, S., Azarani, A., & Johnston, L. J. (1991). Diffuse reflectance laser flash photolysis studies of reactions of triplet benzophenone with hydrogen donors on silica. The Journal of Physical Chemistry, 95(11), 4430-4435. doi:10.1021/j100164a049

Sakamoto, M., Fujistuka, M., & Majima, T. (2009). Light as a construction tool of metal nanoparticles: Synthesis and mechanism. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 10(1), 33-56. doi:10.1016/j.jphotochemrev.2008.11.002

Scaiano, J. C., Abuin, E. B., & Stewart, L. C. (1982). Photochemistry of benzophenone in micelles. Formation and decay of radical pairs. Journal of the American Chemical Society, 104(21), 5673-5679. doi:10.1021/ja00385a020

Reinsch, H., Krüger, M., Marrot, J., & Stock, N. (2013). First Keto-Functionalized Microporous Al-Based Metal–Organic Framework: [Al(OH)(O2C-C6H4-CO-C6H4-CO2)]. Inorganic Chemistry, 52(4), 1854-1859. doi:10.1021/ic301961q

Baldoví, H. G., Ferrer, B., Álvaro, M., & García, H. (2014). Microsecond Transient Absorption Spectra of Suspended Semiconducting Metal Oxide Nanoparticles. The Journal of Physical Chemistry C, 118(17), 9275-9282. doi:10.1021/jp5018345

Laurier, K. G. M., Fron, E., Atienzar, P., Kennes, K., Garcia, H., Van der Auweraer, M., … Roeffaers, M. B. J. (2014). Delayed electron–hole pair recombination in iron(iii)-oxo metal–organic frameworks. Phys. Chem. Chem. Phys., 16(11), 5044-5047. doi:10.1039/c3cp55028a

Alvaro, M., Aprile, C., Ferrer, B., & Garcia, H. (2007). Functional Molecules from Single Wall Carbon Nanotubes. Photoinduced Solubility of Short Single Wall Carbon Nanotube Residues by Covalent Anchoring of 2,4,6-Triarylpyrylium Units. Journal of the American Chemical Society, 129(17), 5647-5655. doi:10.1021/ja0690520

Martínez, L. J., & Scaiano, J. C. (1997). Transient Intermediates in the Laser Flash Photolysis of Ketoprofen in Aqueous Solutions:  Unusual Photochemistry for the Benzophenone Chromophore. Journal of the American Chemical Society, 119(45), 11066-11070. doi:10.1021/ja970818t

Ferreira, L. F. V., Ferreira, M. R. V., Oliveira, A. S., Branco, T. J. F., Prata, J. V., & Moreira, J. C. (2001). Diffuse reflectance studies of β-phenylpropiophenone and benzophenone inclusion complexes with calix[4], [6] and [8]arenesDedicated to Professor Frank Wilkinson on the occasion of his retirement. Physical Chemistry Chemical Physics, 4(2), 204-210. doi:10.1039/b106760p

Sakamoto, M., Cai, X., Hara, M., Tojo, S., Fujitsuka, M., & Majima, T. (2004). Transient Absorption Spectra and Lifetimes of Benzophenone Ketyl Radicals in the Excited State. The Journal of Physical Chemistry A, 108(40), 8147-8150. doi:10.1021/jp047058a

Tsubomura, H., Yamamoto, N., & Tanaka, S. (1967). Transient absorption spectra of benzophenone studied by the flash excitation. Chemical Physics Letters, 1(8), 309-310. doi:10.1016/0009-2614(67)80001-0

Devadoss, C., & Fessenden, R. W. (1991). Picosecond and nanosecond studies of the photoreduction of benzophenone by N,N-diethylaniline and triethylamine. The Journal of Physical Chemistry, 95(19), 7253-7260. doi:10.1021/j100172a030

Viltres Costa, C., Grela, M. A., & Churio, M. S. (1996). On the yield of intermediates formed in the photoreduction of benzophenone. Journal of Photochemistry and Photobiology A: Chemistry, 99(1), 51-56. doi:10.1016/1010-6030(96)04327-4

[-]

This item appears in the following Collection(s)

Show full item record