Iborra Carreres, A.; Rodríguez Álvarez, MJ.; Soriano Asensi, A.; Sanchez, F.; Bellido, P.; Conde Castellanos, PE.; Crespo Navarro, E.... (2015). Noise Analysis in Computed Tomography (CT) Image Reconstruction using QR-Decomposition Algorithm. IEEE Transactions on Nuclear Science. 62(3):869-875. https://doi.org/10.1109/TNS.2015.2422213
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64026
Título:
|
Noise Analysis in Computed Tomography (CT) Image Reconstruction using QR-Decomposition Algorithm
|
Autor:
|
Iborra Carreres, Amadeo
Rodríguez Álvarez, María José
Soriano Asensi, Antonio
Sanchez, F.
Bellido, P.
Conde Castellanos, Pablo Eloy
Crespo Navarro, Efren
González Martínez, Antonio Javier
Moliner Martínez, Laura
Rigla Pérez, Juan Pablo
Seimetz, Michael
Vidal San Sebastián, Luis Fernando
Benlloch Baviera, Jose María
|
Entidad UPV:
|
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Fecha difusión:
|
|
Resumen:
|
In this paper, the noise of 3D computed tomography
(CT) image reconstruction using QR-Decomposition is analyzed.
There are several types of image noise that can interfere with the
interpretation of an image. Here, the ...[+]
In this paper, the noise of 3D computed tomography
(CT) image reconstruction using QR-Decomposition is analyzed.
There are several types of image noise that can interfere with the
interpretation of an image. Here, the noise introduced by the reconstruction
process is studied. In this analysis, condition numbers
are calculated with different CT model parameters, three dimensional
(3D) CT image reconstruction with simulated and real data
are performed, image noise analysis is performed through various
image quality parameters and the condition number of the linear
system is related with the image quality parameters. Results show
the condition number’s dependence on the CT model. Image reconstructions
with simulated data show errors significantly below
the condition number theoretical bound and image reconstructions
with real data show that quality improvements depend strongly on
the condition number. This allows a reduction on the number of
projections without compromising image quality and places this
reconstruction method as a strong candidate for low-dose 3D CT
imaging reconstruction.
[-]
|
Palabras clave:
|
CT image reconstruction
,
CT low dose imaging
,
CT modeling
,
Image noise
,
Inverse problem
,
Medical imaging
,
QR decomposition
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
IEEE Transactions on Nuclear Science. (issn:
0018-9499
)
|
DOI:
|
10.1109/TNS.2015.2422213
|
Editorial:
|
Institute of Electrical and Electronics Engineers (IEEE)
|
Versión del editor:
|
http://dx.doi.org/ 10.1109/TNS.2015.2422213
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MINECO//RTC-2014-2065-2Q4618002BC.VALENCIANA/ES/Desarrollo de una Tecnología avanzada de detección de materias extrañas y perfil de texturas en el interior de alimentos - INSIDEFOOD/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F010/
info:eu-repo/grantAgreement/GVA//ISIC%2F2011%2F013/
|
Descripción:
|
“©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”
|
Agradecimientos:
|
This work was supported in part by the Spanish Goverment grant RTC-2014-2065-2 and the Valencian Local Government grants PROMETEOII/2013/010 and ISIC 2011/013.
|
Tipo:
|
Artículo
|