- -

The Hadamard Product of a Nonsingular General H--Matrix and Its Inverse Transpose Is Diagonaly Dominant

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Hadamard Product of a Nonsingular General H--Matrix and Its Inverse Transpose Is Diagonaly Dominant

Mostrar el registro completo del ítem

Bru García, R.; Gasso Matoses, MT.; Gimenez Manglano, MI.; Scott, JA. (2015). The Hadamard Product of a Nonsingular General H--Matrix and Its Inverse Transpose Is Diagonaly Dominant. Journal of Applied Mathematics. 2015:1-6. https://doi.org/10.1155/2015/264680

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64027

Ficheros en el ítem

Metadatos del ítem

Título: The Hadamard Product of a Nonsingular General H--Matrix and Its Inverse Transpose Is Diagonaly Dominant
Autor: Bru García, Rafael Gasso Matoses, María Teresa Gimenez Manglano, María Isabel Scott, José A.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We study the combined matrix of a nonsingular H-matrix. Iese matrices can belong to two diRerent H-matrices classes: the most common, invertible class, and one particular class named mixed class. DiRerent results ...[+]
Palabras clave: H-matrix
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Applied Mathematics. (issn: 1110-757X )
DOI: 10.1155/2015/264680
Editorial:
Hindawi Publishing Corporation
Versión del editor: http://dx.doi.org/10.1155/2015/264680
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/
Agradecimientos:
Ie authors thank the referee for suggesting changes that have improved the presentation of the paper. Iis research was supported by Spanish DGI Grant no. MTM2014-58159-P.
Tipo: Artículo

References

Fiedler, M., & Markham, T. L. (1988). An inequality for the hadamard product of an M-matrix and an inverse M-matrix. Linear Algebra and its Applications, 101, 1-8. doi:10.1016/0024-3795(88)90139-5

Johnson, C. R., & Shapiro, H. M. (1986). Mathematical Aspects of the Relative Gain Array $( A \circ A^{ - T} )$. SIAM Journal on Algebraic Discrete Methods, 7(4), 627-644. doi:10.1137/0607069

Fiedler, M., & Markham, T. L. (2011). Combined matrices in special classes of matrices. Linear Algebra and its Applications, 435(8), 1945-1955. doi:10.1016/j.laa.2011.03.054 [+]
Fiedler, M., & Markham, T. L. (1988). An inequality for the hadamard product of an M-matrix and an inverse M-matrix. Linear Algebra and its Applications, 101, 1-8. doi:10.1016/0024-3795(88)90139-5

Johnson, C. R., & Shapiro, H. M. (1986). Mathematical Aspects of the Relative Gain Array $( A \circ A^{ - T} )$. SIAM Journal on Algebraic Discrete Methods, 7(4), 627-644. doi:10.1137/0607069

Fiedler, M., & Markham, T. L. (2011). Combined matrices in special classes of matrices. Linear Algebra and its Applications, 435(8), 1945-1955. doi:10.1016/j.laa.2011.03.054

Fiedler, M. (2010). Notes on Hilbert and Cauchy matrices. Linear Algebra and its Applications, 432(1), 351-356. doi:10.1016/j.laa.2009.08.014

Bru, R., Gassó, M. T., Giménez, I., & Santana, M. (2014). Nonnegative Combined Matrices. Journal of Applied Mathematics, 2014, 1-5. doi:10.1155/2014/182354

Bru, R., Gassó, M. T., Giménez, I., & Santana, M. (2016). Combined matrices of sign regular matrices. Linear Algebra and its Applications, 498, 88-98. doi:10.1016/j.laa.2014.12.010

Bristol, E. (1966). On a new measure of interaction for multivariable process control. IEEE Transactions on Automatic Control, 11(1), 133-134. doi:10.1109/tac.1966.1098266

Horn, R. A., & Johnson, C. R. (1991). Topics in Matrix Analysis. doi:10.1017/cbo9780511840371

Lynn, M. S. (1964). On the Schur product of H-matrices and non-negative matrices, and related inequalities. Mathematical Proceedings of the Cambridge Philosophical Society, 60(3), 425-431. doi:10.1017/s0305004100037932

Johnson, C. R. (1977). A Hadamard product involving N-matrices. Linear and Multilinear Algebra, 4(4), 261-264. doi:10.1080/03081087708817160

Berman, A., & Plemmons, R. J. (1994). Nonnegative Matrices in the Mathematical Sciences. doi:10.1137/1.9781611971262

Bru, R., Corral, C., Giménez, I., & Mas, J. (2008). Classes of general H-matrices. Linear Algebra and its Applications, 429(10), 2358-2366. doi:10.1016/j.laa.2007.10.030

Bru, R., Corral, C., Giménez, I., & Mas, J. (2009). Schur complement of generalH-matrices. Numerical Linear Algebra with Applications, 16(11-12), 935-947. doi:10.1002/nla.668

Varga, R. S. (1976). On recurring theorems on diagonal dominance. Linear Algebra and its Applications, 13(1-2), 1-9. doi:10.1016/0024-3795(76)90037-9

Bru, R., Cvetković, L., Kostić, V., & Pedroche, F. (2010). Characterization of α1 and α2-matrices. Central European Journal of Mathematics, 8(1), 32-40. doi:10.2478/s11533-009-0068-6

Cvetković, L. (2006). H-matrix theory vs. eigenvalue localization. Numerical Algorithms, 42(3-4), 229-245. doi:10.1007/s11075-006-9029-3

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem