- -

p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Latorre Sánchez, Marcos es_ES
dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author Atienzar Corvillo, Pedro Enrique es_ES
dc.contributor.author Forneli Rubio, Mª Amparo es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2016-05-16T12:42:44Z
dc.date.issued 2015-02-25
dc.identifier.issn 1613-6810
dc.identifier.uri http://hdl.handle.net/10251/64120
dc.description.abstract Nitrogen-doped graphene [(N)G] obtained by pyrolysis at 900 degrees C of nanometric chitosan films exhibits a Hall effect characteristic of n-type semiconductors. In contrast, boron-doped graphene [(B)G] obtained by pyrolysis of borate ester of alginate behaves as a p-type semiconductor based also on the Hall effect. A p-n heterojunction of (B) G-(N) G films is built by stepwise coating of a quartz plate using a mask. The heterojunction is created by the partial overlapping of the (B) G-(N) G films. Upon irradiation with a xenon lamp of aqueous solutions of H2PtCl6 and MnCl2 in contact with the heterojunction, preferential electron migration from (B) G to (N) G with preferential location of positive holes on (B) G is established by observation in scanning electron microscopy of the formation of Pt nanoparticles (NP) on (N) G and MnO2 NP on (B) G. The benefits of the heterojunction with respect to the devices having one individual component as a consequence of the electron migration through the p-n heterojunction are illustrated by measuring the photocurrent in the (B) G-(N) G heterojunction (180% current enhancement with respect to the dark current) and compared it to the photocurrent of the individual (B) G (15% enhancement) and (N) G (55% enhancement) components. es_ES
dc.description.sponsorship Financial Support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315) is gratefully acknowledged. MLS and PA thank also to the Spanish Ministry and the National Research Council for a postgraduate scholarship and a research associate contract, respectively. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Small es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject HYDROGEN GENERATION es_ES
dc.subject PHOTOCATALYST es_ES
dc.subject SILICON es_ES
dc.subject OXIDE es_ES
dc.subject CARBOCATALYST es_ES
dc.subject OXIDATION es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/smll.201402278
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Latorre Sánchez, M.; Primo Arnau, AM.; Atienzar Corvillo, PE.; Forneli Rubio, MA.; García Gómez, H. (2015). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small. 11(8):970-975. https://doi.org/10.1002/smll.201402278 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/smll.201402278 es_ES
dc.description.upvformatpinicio 970 es_ES
dc.description.upvformatpfin 975 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 305136 es_ES
dc.identifier.eissn 1613-6829
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035g es_ES
dc.description.references Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849 es_ES
dc.description.references Huang, C., Li, C., & Shi, G. (2012). Graphene based catalysts. Energy & Environmental Science, 5(10), 8848. doi:10.1039/c2ee22238h es_ES
dc.description.references Latorre-Sánchez, M., Lavorato, C., Puche, M., Fornés, V., Molinari, R., & Garcia, H. (2012). Visible-Light Photocatalytic Hydrogen Generation by Using Dye-Sensitized Graphene Oxide as a Photocatalyst. Chemistry - A European Journal, 18(52), 16774-16783. doi:10.1002/chem.201202372 es_ES
dc.description.references Lavorato, C., Primo, A., Molinari, R., & Garcia, H. (2013). N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 20(1), 187-194. doi:10.1002/chem.201303689 es_ES
dc.description.references Xiang, Q., Yu, J., & Jaroniec, M. (2012). Graphene-based semiconductor photocatalysts. Chem. Soc. Rev., 41(2), 782-796. doi:10.1039/c1cs15172j es_ES
dc.description.references Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20(14), 2255-2262. doi:10.1002/adfm.201000274 es_ES
dc.description.references Zhang, N., Zhang, Y., & Xu, Y.-J. (2012). Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale, 4(19), 5792. doi:10.1039/c2nr31480k es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g es_ES
dc.description.references Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068 es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 es_ES
dc.description.references Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653 es_ES
dc.description.references Caughey, D. M., & Thomas, R. E. (1967). Carrier mobilities in silicon empirically related to doping and field. Proceedings of the IEEE, 55(12), 2192-2193. doi:10.1109/proc.1967.6123 es_ES
dc.description.references Spear, W. E., & Le Comber, P. G. (1975). Substitutional doping of amorphous silicon. Solid State Communications, 17(9), 1193-1196. doi:10.1016/0038-1098(75)90284-7 es_ES
dc.description.references Cui, Y., Duan, X., Hu, J., & Lieber, C. M. (2000). Doping and Electrical Transport in Silicon Nanowires. The Journal of Physical Chemistry B, 104(22), 5213-5216. doi:10.1021/jp0009305 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem