- -

Thermal Properties of Electrospun Poly(Lactic Acid) Membranes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal Properties of Electrospun Poly(Lactic Acid) Membranes

Mostrar el registro completo del ítem

Sencadas, VJGDS.; Costa, C.; Botelho, G.; Caparrós, C.; Ribeiro, C.; Gómez Ribelles, JL.; Lanceros-Mendez, S. (2012). Thermal Properties of Electrospun Poly(Lactic Acid) Membranes. Journal of Macromolecular Science Part B Physics. 51(1-3):411-424. https://doi.org/10.1080/00222348.2011.597325

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64183

Ficheros en el ítem

Metadatos del ítem

Título: Thermal Properties of Electrospun Poly(Lactic Acid) Membranes
Autor: Sencadas, Vitor Joao Gomes Da Silva Costa, C.M. Botelho, G. Caparrós, C. Ribeiro, C. Gómez Ribelles, José Luís Lanceros-Mendez, Senentxu
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
[EN] Poly(lactic acid) (PLA) electrospun membranes were obtained by electrospinning and characterized by scanning electron microscopy (SEM) and thermal analysis. The polymer membranes showed a random fiber distribution ...[+]
Palabras clave: activation energy , electrospinning , electrospun fibers , poly(lactic acid) , polymer characterization , TGA , thermal degradation kinetics
Derechos de uso: Cerrado
Fuente:
Journal of Macromolecular Science Part B Physics. (issn: 0022-2348 ) (eissn: 1525-609X )
DOI: 10.1080/00222348.2011.597325
Editorial:
Taylor & Francis
Versión del editor: http://dx.doi.org/10.1080/00222348.2011.597325
Código del Proyecto:
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/
info:eu-repo/grantAgreement/MEC//MAT2007-66759-C03-01/ES/NUEVOS SUBSTRATOS POLIMERICOS BIORREABSORBIBLES PARA LA REGENERACION DEL CARTILAGO ARTICULAR/
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/109368/PT/“Smart joint implants using bionanocomposites-(SIMBIO)”/
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/73030/PT/Polarization-driven self-assembly of organic and biomaterials using ferroelectric polymers/
Agradecimientos:
The authors thank the Portuguese Foundation for Science and Technology (FCT) for finantial support under grants NANO/NMed-SD/0156/2007 and PTDC/CTM/73030/2006. V. Sencadas thanks the FCT for the SFRH/BPD/63148/2009 grant. ...[+]
Tipo: Artículo

References

Nijenhuis, A. J., Grijpma, D. W., & Pennings, A. J. (1992). Lewis acid catalyzed polymerization of L-lactide. Kinetics and mechanism of the bulk polymerization. Macromolecules, 25(24), 6419-6424. doi:10.1021/ma00050a006

Tsuji, H., Daimon, H., & Fujie, K. (2003). A New Strategy for Recycling and Preparation of Poly(l-lactic acid):  Hydrolysis in the Melt. Biomacromolecules, 4(3), 835-840. doi:10.1021/bm034060j

Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004 [+]
Nijenhuis, A. J., Grijpma, D. W., & Pennings, A. J. (1992). Lewis acid catalyzed polymerization of L-lactide. Kinetics and mechanism of the bulk polymerization. Macromolecules, 25(24), 6419-6424. doi:10.1021/ma00050a006

Tsuji, H., Daimon, H., & Fujie, K. (2003). A New Strategy for Recycling and Preparation of Poly(l-lactic acid):  Hydrolysis in the Melt. Biomacromolecules, 4(3), 835-840. doi:10.1021/bm034060j

Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004

Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2-3), 151-160. doi:10.1016/0304-3886(95)00041-8

Ramakrishna, S., Fujihara, K., Teo, W.-E., Lim, T.-C., & Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers. doi:10.1142/9789812567611

Sabir, M. I., Xu, X., & Li, L. (2009). A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 44(21), 5713-5724. doi:10.1007/s10853-009-3770-7

Yang, F., Murugan, R., Ramakrishna, S., Wang, X., Ma, Y.-X., & Wang, S. (2004). Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials, 25(10), 1891-1900. doi:10.1016/j.biomaterials.2003.08.062

Li, W.-J., Tuli, R., Okafor, C., Derfoul, A., Danielson, K. G., Hall, D. J., & Tuan, R. S. (2005). A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 26(6), 599-609. doi:10.1016/j.biomaterials.2004.03.005

Shin, M., Yoshimoto, H., & Vacanti, J. P. (2004). In Vivo Bone Tissue Engineering Using Mesenchymal Stem Cells on a Novel Electrospun Nanofibrous Scaffold. Tissue Engineering, 10(1-2), 33-41. doi:10.1089/107632704322791673

Shin, M., Ishii, O., Sueda, T., & Vacanti, J. P. (2004). Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials, 25(17), 3717-3723. doi:10.1016/j.biomaterials.2003.10.055

Zhang, Y., Lim, C. T., Ramakrishna, S., & Huang, Z.-M. (2005). Recent development of polymer nanofibers for biomedical and biotechnological applications. Journal of Materials Science: Materials in Medicine, 16(10), 933-946. doi:10.1007/s10856-005-4428-x

Kopinke, F.-D., Remmler, M., Mackenzie, K., Möder, M., & Wachsen, O. (1996). Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid). Polymer Degradation and Stability, 53(3), 329-342. doi:10.1016/0141-3910(96)00102-4

Kopinke, F.-D., & Mackenzie, K. (1997). Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis, 40-41, 43-53. doi:10.1016/s0165-2370(97)00022-3

Cam, D., & Marucci, M. (1997). Influence of residual monomers and metals on poly (l-lactide) thermal stability. Polymer, 38(8), 1879-1884. doi:10.1016/s0032-3861(96)00711-2

McNeill, I. C., & Leiper, H. A. (1985). Degradation studies of some polyesters and polycarbonates—1. Polylactide: General features of the degradation under programmed heating conditions. Polymer Degradation and Stability, 11(3), 267-285. doi:10.1016/0141-3910(85)90050-3

Babanalbandi, A., Hill, D. J. T., Hunter, D. S., & Kettle, L. (1999). Thermal stability of poly(lactic acid) before and after γ-radiolysis. Polymer International, 48(10), 980-984. doi:10.1002/(sici)1097-0126(199910)48:10<980::aid-pi257>3.0.co;2-b

Aoyagi, Y., Yamashita, K., & Doi, Y. (2002). Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polymer Degradation and Stability, 76(1), 53-59. doi:10.1016/s0141-3910(01)00265-8

Zou, H., Yi, C., Wang, L., Liu, H., & Xu, W. (2009). Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. Journal of Thermal Analysis and Calorimetry, 97(3), 929-935. doi:10.1007/s10973-009-0121-5

Turi, E. 1997. “Thermal characterization of polymeric materials”. New York: Academic Press.

Sencadas, V., Lanceros-Méndez, S., & Mano, J. . (2004). Effect of the mechanical stretching on the ferroelectric properties of a (VDF/TrFE) (75/25) copolymer film. Solid State Communications, 129(1), 5-8. doi:10.1016/j.ssc.2003.07.010

Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4(5), 323-328. doi:10.1002/pol.1966.110040504

Ozawa, T. (1965). A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society of Japan, 38(11), 1881-1886. doi:10.1246/bcsj.38.1881

Chrissafis, K., Paraskevopoulos, K. M., & Bikiaris, D. N. (2005). Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): Comparative study. Thermochimica Acta, 435(2), 142-150. doi:10.1016/j.tca.2005.05.011

Chrissafis, K., Paraskevopoulos, K. M., & Bikiaris, D. N. (2006). Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polymer Degradation and Stability, 91(1), 60-68. doi:10.1016/j.polymdegradstab.2005.04.028

Hamciuc, C., Vlad-Bubulac, T., Petreus, O., & Lisa, G. (2007). Kinetics of thermal degradation in non-isothermal conditions of some phosphorus-containing polyesters and polyesterimides. European Polymer Journal, 43(3), 980-988. doi:10.1016/j.eurpolymj.2006.12.018

Kissinger, H. E. (1956). Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57(4), 217. doi:10.6028/jres.057.026

Kissinger, H. E. (1957). Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 29(11), 1702-1706. doi:10.1021/ac60131a045

Zhou, H., Green, T. B., & Joo, Y. L. (2006). The thermal effects on electrospinning of polylactic acid melts. Polymer, 47(21), 7497-7505. doi:10.1016/j.polymer.2006.08.042

Zeng, J., Chen, X., Liang, Q., Xu, X., & Jing, X. (2004). Enzymatic Degradation of Poly(L-lactide) and Poly(?-caprolactone) Electrospun Fibers. Macromolecular Bioscience, 4(12), 1118-1125. doi:10.1002/mabi.200400092

Inai, R., Kotaki, M., & Ramakrishna, S. (2005). Deformation behavior of electrospun poly(L-lactide-co-ɛ-caprolactone) nonwoven membranes under uniaxial tensile loading. Journal of Polymer Science Part B: Polymer Physics, 43(22), 3205-3212. doi:10.1002/polb.20457

Migliaresi, C., Cohn, D., De Lollis, A., & Fambri, L. (1991). Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights: Effect of thermal treatments. Journal of Applied Polymer Science, 43(1), 83-95. doi:10.1002/app.1991.070430109

Hernández Sánchez, F., Molina Mateo, J., Romero Colomer, F. J., Salmerón Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2005). Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 6(6), 3283-3290. doi:10.1021/bm050323t

Salmerón Sánchez, M., Mathot, V. B. F., Vanden Poel, G., & Gómez Ribelles, J. L. (2007). Effect of the Cooling Rate on the Nucleation Kinetics of Poly(l-Lactic Acid) and Its Influence on Morphology. Macromolecules, 40(22), 7989-7997. doi:10.1021/ma0712706

Hatakeyama, T. and Quinn, F. X. 1994. “Thermal analysis, fundamentals and applications to polymer science”. Chichester: John Wiley & Sons.

Jang, B. N., & Wilkie, C. A. (2005). The thermal degradation of bisphenol A polycarbonate in air. Thermochimica Acta, 426(1-2), 73-84. doi:10.1016/j.tca.2004.07.023

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. 1999. “Numerical recipes in fortran 77: the art of scientific computing”. Cambridge: Cambridge University Press.

Vyazovkin, S., & Sbirrazzuoli, N. (2006). Isoconversional Kinetic Analysis of Thermally Stimulated Processes in Polymers. Macromolecular Rapid Communications, 27(18), 1515-1532. doi:10.1002/marc.200600404

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem