- -

Crop Biometric Maps: The Key to Prediction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Crop Biometric Maps: The Key to Prediction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rovira Más, Francisco es_ES
dc.contributor.author Sáiz Rubio, Verónica es_ES
dc.date.accessioned 2016-05-19T06:28:29Z
dc.date.available 2016-05-19T06:28:29Z
dc.date.issued 2013-09
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/64344
dc.description.abstract [EN] The sustainability of agricultural production in the twenty-first century, both in industrialized and developing countries, benefits from the integration of farm management with information technology such that individual plants, rows, or subfields may be endowed with a singular “identity.” This approach approximates the nature of agricultural processes to the engineering of industrial processes. In order to cope with the vast variability of nature and the uncertainties of agricultural production, the concept of crop biometrics is defined as the scientific analysis of agricultural observations confined to spaces of reduced dimensions and known position with the purpose of building prediction models. This article develops the idea of crop biometrics by setting its principles, discussing the selection and quantization of biometric traits, and analyzing the mathematical relationships among measured and predicted traits. Crop biometric maps were applied to the case of a wine-production vineyard, in which vegetation amount, relative altitude in the field, soil compaction, berry size, grape yield, juice pH, and grape sugar content were selected as biometric traits. The enological potential of grapes was assessed with a quality-index map defined as a combination of titratable acidity, sugar content, and must pH. Prediction models for yield and quality were developed for high and low resolution maps, showing the great potential of crop biometric maps as a strategic tool for vineyard growers as well as for crop managers in general, due to the wide versatility of the methodology proposed. es_ES
dc.description.sponsorship The authors would like to express their gratitude to Edmund Optics, Inc. for supporting the ideas developed in this article with the 2011 Research and Innovation Award, as well as to the Farming by Satellite 2012 Prize sponsored by Claas, Bayer CropScience, and the European GNSS Agency (GSA). en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject precision farming es_ES
dc.subject global positioning es_ES
dc.subject yield prediction es_ES
dc.subject crop monitoring es_ES
dc.subject vineyard management es_ES
dc.subject precision viticulture es_ES
dc.subject agricultural robotics es_ES
dc.subject information technology es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Crop Biometric Maps: The Key to Prediction es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s130912698
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.description.bibliographicCitation Rovira Más, F.; Sáiz Rubio, V. (2013). Crop Biometric Maps: The Key to Prediction. Sensors. 13(9):12698-12743. doi:10.3390/s130912698 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.3390/s130912698 es_ES
dc.description.upvformatpinicio 12698 es_ES
dc.description.upvformatpfin 12743 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 247306 es_ES
dc.identifier.pmid 24064605 en_EN
dc.identifier.pmcid PMC3821323 en_EN
dc.contributor.funder Edmund Optics, Inc. es_ES
dc.contributor.funder Bayer CropScience es_ES
dc.contributor.funder European GNSS Agency es_ES
dc.description.references Cox-Foster, D., & vanEngelsdorp, D. (2009). Saving the Honeybee. Scientific American, 300(4), 40-47. doi:10.1038/scientificamerican0409-40 es_ES
dc.description.references Farmers Fuel Growing Market for Imaging Systemshttp://www.photonics.com/Article.aspx?AID=54039 es_ES
dc.description.references Fountas, S., Blackmore, S., Ess, D., Hawkins, S., Blumhoff, G., Lowenberg-Deboer, J., & Sorensen, C. G. (2005). Farmer Experience with Precision Agriculture in Denmark and the US Eastern Corn Belt. Precision Agriculture, 6(2), 121-141. doi:10.1007/s11119-004-1030-z es_ES
dc.description.references Camera Advances Drive Scientific Researchhttp://www.photonics.com/Article.aspx?AID=51848 es_ES
dc.description.references Bringing Space Science Down to Earthhttp://www.insidegnss.com/node/3185 es_ES
dc.description.references Schueller, J. ., Whitney, J. ., Wheaton, T. ., Miller, W. ., & Turner, A. . (1999). Low-cost automatic yield mapping in hand-harvested citrus. Computers and Electronics in Agriculture, 23(2), 145-153. doi:10.1016/s0168-1699(99)00028-9 es_ES
dc.description.references Sui, R., Thomasson, J. A., Hanks, J., & Wooten, J. (2008). Ground-based sensing system for weed mapping in cotton. Computers and Electronics in Agriculture, 60(1), 31-38. doi:10.1016/j.compag.2007.06.002 es_ES
dc.description.references Jain, A. K., & Pankanti, S. (2008). Beyond Fingerprinting. Scientific American, 299(3), 78-81. doi:10.1038/scientificamerican0908-78 es_ES
dc.description.references Lasers Find Varied Uses in Space Applicationshttp://www.photonics.com/Article.aspx?AID=52252 es_ES
dc.description.references Rovira-Más, F. (2012). Global-referenced navigation grids for off-road vehicles and environments. Robotics and Autonomous Systems, 60(2), 278-287. doi:10.1016/j.robot.2011.11.007 es_ES
dc.description.references Rovira-Más, F., & Banerjee, R. (2012). GPS data conditioning for enhancing reliability of automated off-road vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(4), 521-535. doi:10.1177/0954407012454976 es_ES
dc.description.references Sáiz-Rubio, V., & Rovira-Más, F. (2012). Dynamic segmentation to estimate vine vigor from ground images. Spanish Journal of Agricultural Research, 10(3), 596. doi:10.5424/sjar/2012103-508-11 es_ES
dc.description.references Rovira-Más, F. (2010). Sensor Architecture and Task Classification for Agricultural Vehicles and Environments. Sensors, 10(12), 11226-11247. doi:10.3390/s101211226 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem