dc.contributor.author |
Talens Oliag, Pau
|
es_ES |
dc.contributor.author |
Mora, Leticia
|
es_ES |
dc.contributor.author |
Morsy, Noha
|
es_ES |
dc.contributor.author |
Barbin, Douglas F.
|
es_ES |
dc.contributor.author |
ElMasry, Gamal
|
es_ES |
dc.contributor.author |
Sun, Da-Wen
|
es_ES |
dc.date.accessioned |
2016-05-20T10:23:23Z |
|
dc.date.available |
2016-05-20T10:23:23Z |
|
dc.date.issued |
2013 |
|
dc.identifier.issn |
0260-8774 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/64463 |
|
dc.description.abstract |
[EN] This study was carried out to investigate the ability of hyperspectral imaging technique in the NIR spectral
region of 900 1700 nm for the prediction of water and protein contents in Spanish cooked hams.
Multivariate analyses using partial least-squares regression (PLSR) and partial least squares-discriminant
analysis (PLS-DA) were applied to the spectral data extracted from the images to develop statistical models
for predicting chemical attributes and classify the different qualities. Feature-related wavelengths
were identified for protein (930, 971, 1051, 1137, 1165, 1212, 1295, 1400, 1645 and 1682 nm) and water
(930, 971, 1084, 1212, 1645 and 1682 nm) and used for regression models with fewer predictors. The
PLS-DA model using optimal wavelengths (966, 1061, 1148, 1256, 1373 and 1628 nm) successfully classified
the examined hams in different quality categories. The results revealed the potentiality of NIR
hyperspectral imaging technique as an objective and non-destructive method for the authentication
and classification of cooked hams. |
es_ES |
dc.description.sponsorship |
Author Pau Talens acknowledges the Spanish Ministry of Education for the financial support of his fellowship to do a period abroad at University College Dublin, National University of Ireland (Orden EDU/3378/2010 de 21 de diciembre). |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
Elsevier |
es_ES |
dc.relation.ispartof |
Journal of Food Engineering |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Chemical image |
es_ES |
dc.subject |
Chemical attributes |
es_ES |
dc.subject |
PLSR |
es_ES |
dc.subject |
PLS-DA |
es_ES |
dc.subject |
Spanish cooked ham |
es_ES |
dc.subject |
Hyperspectral imaging |
es_ES |
dc.subject.classification |
TECNOLOGIA DE ALIMENTOS |
es_ES |
dc.title |
Prediction of water and protein contents and quality classification of Spanish cooked ham using NIR hyperspectral imaging |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1016/j.jfoodeng.2013.03.014 |
|
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments |
es_ES |
dc.description.bibliographicCitation |
Talens Oliag, P.; Mora, L.; Morsy, N.; Barbin, DF.; Elmasry, G.; Sun, D. (2013). Prediction of water and protein contents and quality classification of Spanish cooked ham using NIR hyperspectral imaging. Journal of Food Engineering. (117):272-280. doi:10.1016/j.jfoodeng.2013.03.014 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://dx.doi.org/10.1016/j.jfoodeng.2013.03.014 |
es_ES |
dc.description.upvformatpinicio |
272 |
es_ES |
dc.description.upvformatpfin |
280 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.issue |
117 |
es_ES |
dc.relation.senia |
242246 |
es_ES |
dc.contributor.funder |
Ministerio de Educación |
es_ES |