Mostrar el registro sencillo del ítem
dc.contributor.author | Cobacho Jordán, Ricardo | es_ES |
dc.contributor.author | Arregui de la Cruz, Francisco | es_ES |
dc.contributor.author | Soriano Olivares, Javier | es_ES |
dc.contributor.author | Cabrera Rochera, Enrique | es_ES |
dc.date.accessioned | 2016-05-20T13:59:21Z | |
dc.date.available | 2016-05-20T13:59:21Z | |
dc.date.issued | 2015-03 | |
dc.identifier.issn | 0003-7214 | |
dc.identifier.uri | http://hdl.handle.net/10251/64488 | |
dc.description.abstract | EPANET is one of the most widely used software packages for water network hydraulic modelling, and is especially interesting for educational and research purposes because it is in the public domain. However, EPANET simulations are demand-driven, and the program does not include a specific functionality to model water leakage, which is pressure-driven. Consequently, users are required to deal with this drawback by themselves. As a general solution for this problem, this paper presents a methodology for including leakage in EPANET models by following a two-stage process. Firstly, leakage is spatially distributed among the nodes, according to the characteristics of the network. Secondly, leakage is modelled through an emitter at each node. The process is described in detail and two numerical examples illustrate the applicability and advantages of the method. In addition, free access through a URL is provided to the leakage modelling tool that has been developed. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IWA Publishing | es_ES |
dc.relation.ispartof | Journal of Water Supply: Research and Technology - Aqua | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Emitters | es_ES |
dc.subject | EPANET | es_ES |
dc.subject | Hydraulic modelling | es_ES |
dc.subject | Leakage | es_ES |
dc.subject | Water Distribution Networks | es_ES |
dc.subject.classification | MECANICA DE FLUIDOS | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Including leakage in network models: an application to calibrate leak valves in EPANET | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2166/aqua.2014.197 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Tecnológico del Agua - Institut Tecnològic de l'Aigua | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Cobacho Jordán, R.; Arregui De La Cruz, F.; Soriano Olivares, J.; Cabrera Rochera, E. (2015). Including leakage in network models: an application to calibrate leak valves in EPANET. Journal of Water Supply: Research and Technology - Aqua. 64(2):130-138. doi:10.2166/aqua.2014.197 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.2166/aqua.2014.197 | es_ES |
dc.description.upvformatpinicio | 130 | es_ES |
dc.description.upvformatpfin | 138 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 64 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 308636 | es_ES |
dc.identifier.eissn | 1365-2087 | |
dc.description.references | Al-Ghamdi, A. S. (2011). Leakage–pressure relationship and leakage detection in intermittent water distribution systems. Journal of Water Supply: Research and Technology-Aqua, 60(3), 178-183. doi:10.2166/aqua.2011.003 | es_ES |
dc.description.references | Almandoz, J., Cabrera, E., Arregui, F., Cabrera, E., & Cobacho, R. (2005). Leakage Assessment through Water Distribution Network Simulation. Journal of Water Resources Planning and Management, 131(6), 458-466. doi:10.1061/(asce)0733-9496(2005)131:6(458) | es_ES |
dc.description.references | Ameyaw, E. E., Memon, F. A., & Bicik, J. (2013). Improving equity in intermittent water supply systems. Journal of Water Supply: Research and Technology-Aqua, 62(8), 552-562. doi:10.2166/aqua.2013.065 | es_ES |
dc.description.references | Boulos, P. F., & Bros, C. M. (2010). Assessing the carbon footprint of water supply and distribution systems. Journal - American Water Works Association, 102(11), 47-54. doi:10.1002/j.1551-8833.2010.tb11338.x | es_ES |
dc.description.references | Cabrera, E., Pardo, M. A., Cobacho, R., & Cabrera, E. (2010). Energy Audit of Water Networks. Journal of Water Resources Planning and Management, 136(6), 669-677. doi:10.1061/(asce)wr.1943-5452.0000077 | es_ES |
dc.description.references | Cabrera, E., Cobacho, R., Estruch, V., & Aznar, J. (2011). Analytical hierarchical process (AHP) as a decision support tool in water resources management. Journal of Water Supply: Research and Technology-Aqua, 60(6), 343-351. doi:10.2166/aqua.2011.016 | es_ES |
dc.description.references | Cassa, A. M., & van Zyl, J. E. (2013). Predicting the head-leakage slope of cracks in pipes subject to elastic deformations. Journal of Water Supply: Research and Technology-Aqua, 62(4), 214-223. doi:10.2166/aqua.2013.094 | es_ES |
dc.description.references | Cavallo, A., Di Nardo, A., De Maria, G., & Di Natale, M. (2013). Automated fuzzy decision and control system for reservoir management. Journal of Water Supply: Research and Technology-Aqua, 62(4), 189-204. doi:10.2166/aqua.2013.046 | es_ES |
dc.description.references | Colombo, A. F., & Karney, B. W. (2002). Energy and Costs of Leaky Pipes: Toward Comprehensive Picture. Journal of Water Resources Planning and Management, 128(6), 441-450. doi:10.1061/(asce)0733-9496(2002)128:6(441) | es_ES |
dc.description.references | Prats, A. G., Picó, S. G., Alzamora, F. M., & Bello, M. Á. J. (2012). Random Scenarios Generation with Minimum Energy Consumption Model for Sectoring Optimization in Pressurized Irrigation Networks Using a Simulated Annealing Approach. Journal of Irrigation and Drainage Engineering, 138(7), 613-624. doi:10.1061/(asce)ir.1943-4774.0000452 | es_ES |
dc.description.references | Germanopoulos, G. (1985). A technical note on the inclusion of pressure dependent demand and leakage terms in water supply network models. Civil Engineering Systems, 2(3), 171-179. doi:10.1080/02630258508970401 | es_ES |
dc.description.references | GERMANOPOULOS, G., & JOWITT, P. (1989). LEAKAGE REDUCTION BY EXCESS PRESSURE MINIMIZATION IN A WATER SUPPLY NETWORK. Proceedings of the Institution of Civil Engineers, 87(2), 195-214. doi:10.1680/iicep.1989.2003 | es_ES |
dc.description.references | Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626) | es_ES |
dc.description.references | Islam, M. S., Sadiq, R., Rodriguez, M. J., Francisque, A., Najjaran, H., Naser, B., & Hoorfar, M. (2012). Evaluating leakage potential in water distribution systems: a fuzzy-based methodology. Journal of Water Supply: Research and Technology - Aqua, 61(4), 240-252. doi:10.2166/aqua.2012.151 | es_ES |
dc.description.references | Kleiner, Y., & Rajani, B. (2002). Forecasting Variations and Trends in Water-Main Breaks. Journal of Infrastructure Systems, 8(4), 122-131. doi:10.1061/(asce)1076-0342(2002)8:4(122) | es_ES |
dc.description.references | Shamir, U., & Howard, C. D. D. (1979). An Analytic Approach to Scheduling Pipe Replacement. Journal - American Water Works Association, 71(5), 248-258. doi:10.1002/j.1551-8833.1979.tb04345.x | es_ES |
dc.description.references | Walski, T. M., & Pelliccia, A. (1982). Economic analysis of water main breaks. Journal - American Water Works Association, 74(3), 140-147. doi:10.1002/j.1551-8833.1982.tb04874.x | es_ES |