- -

MRI noise estimation and denoising using non-local PCA

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

MRI noise estimation and denoising using non-local PCA

Mostrar el registro completo del ítem

Manjón Herrera, JV.; Coupé, P.; Buades, A. (2015). MRI noise estimation and denoising using non-local PCA. Medical Image Analysis. 22(1):35-47. doi:10.1016/j.media.2015.01.004

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64623

Ficheros en el ítem

Metadatos del ítem

Título: MRI noise estimation and denoising using non-local PCA
Autor: Manjón Herrera, José Vicente Coupé, Pierrick Buades, Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
This paper proposes a novel method for MRI denoising that exploits both the sparseness and self-similarity properties of the MR images. The proposed method is a two-stage approach that first filters the noisy image using ...[+]
Palabras clave: MRI , Denosing , PCA , Sparseness , Non-local means
Derechos de uso: Reserva de todos los derechos
Fuente:
Medical Image Analysis. (issn: 1361-8415 )
DOI: 10.1016/j.media.2015.01.004
Editorial:
Elsevier
Versión del editor: http://dx.doi.org/10.1016/j.media.2015.01.004
Código del Proyecto:
info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-0003/FR/Initiative d’excellence de l’Université de Bordeaux/IDEX BORDEAUX/
info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-0003/
info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/
info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/FR/Translational Research and Advanced Imaging Laboratory/TRAIL/
Descripción: NOTICE: this is the author’s version of a work that was accepted for publication in Medical Image AnalysisChanges resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Medical Image Analysis, [Volume 22, Issue 1, May 2015, Pages 35–47] DOI 10.1016/j.media.2015.01.004
Agradecimientos:
We are grateful to Dr. Matteo Mangioni and Dr. Alessandro Foi for their help on running their BM4D method in our comparisons. We want also to thank Dr. Luis Marti-Bonmati and Dr. Angel Alberich-Bayarri from Quiron Hospital ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem