- -

Microwave Sintering of zirconia materials: Mechanical and microstructural properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microwave Sintering of zirconia materials: Mechanical and microstructural properties

Mostrar el registro completo del ítem

Borrell Tomás, MA.; Salvador Moya, MD.; Penaranda-Foix, FL.; Catalá Civera, JM. (2012). Microwave Sintering of zirconia materials: Mechanical and microstructural properties. International Journal of Applied Ceramic Technology. 10(2):313-320. https://doi.org/10.1111/j.1744-7402.2011.02741.x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64649

Ficheros en el ítem

Metadatos del ítem

Título: Microwave Sintering of zirconia materials: Mechanical and microstructural properties
Autor: Borrell Tomás, María Amparo Salvador Moya, Mª Dolores Penaranda-Foix, Felipe L. Catalá Civera, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
Commercially, 3mol% Y2O3-stabilized tetragonal zirconia (7090nm) compacts were fabricated using a conventional and a nonconventional sintering technique; microwave heating in a resonant mono-mode cavity at 2.45GHz, at ...[+]
Palabras clave: Microwave sintering , Grain size , Microstructure , Mechanical properties , ZrO2
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Applied Ceramic Technology. (issn: 1546-542X )
DOI: 10.1111/j.1744-7402.2011.02741.x
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1111/j.1744-7402.2011.02741.x
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-05-09/
info:eu-repo/grantAgreement/UPV//PAID-05-10/
Agradecimientos:
This work has been carried out under program to support research and development of the Polytechnic University of Valencia (U.P.V) under multidisciplinary projects, PAID-05-09 and PAID-05-10. A. Borrell acknowledges the ...[+]
Tipo: Artículo

References

Deville, S., Gremillard, L., Chevalier, J., & Fantozzi, G. (2005). A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72B(2), 239-245. doi:10.1002/jbm.b.30123

Binner, J., Annapoorani, K., Paul, A., Santacruz, I., & Vaidhyanathan, B. (2008). Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering. Journal of the European Ceramic Society, 28(5), 973-977. doi:10.1016/j.jeurceramsoc.2007.09.002

Anselmi-Tamburini, U., Garay, J. E., & Munir, Z. A. (2006). Fast low-temperature consolidation of bulk nanometric ceramic materials. Scripta Materialia, 54(5), 823-828. doi:10.1016/j.scriptamat.2005.11.015 [+]
Deville, S., Gremillard, L., Chevalier, J., & Fantozzi, G. (2005). A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72B(2), 239-245. doi:10.1002/jbm.b.30123

Binner, J., Annapoorani, K., Paul, A., Santacruz, I., & Vaidhyanathan, B. (2008). Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering. Journal of the European Ceramic Society, 28(5), 973-977. doi:10.1016/j.jeurceramsoc.2007.09.002

Anselmi-Tamburini, U., Garay, J. E., & Munir, Z. A. (2006). Fast low-temperature consolidation of bulk nanometric ceramic materials. Scripta Materialia, 54(5), 823-828. doi:10.1016/j.scriptamat.2005.11.015

MENDELSON, M. I. (1969). Average Grain Size in Polycrystalline Ceramics. Journal of the American Ceramic Society, 52(8), 443-446. doi:10.1111/j.1151-2916.1969.tb11975.x

Chen, X. ., Khor, K. ., Chan, S. ., & Yu, L. . (2004). Overcoming the effect of contaminant in solid oxide fuel cell (SOFC) electrolyte: spark plasma sintering (SPS) of 0.5wt.% silica-doped yttria-stabilized zirconia (YSZ). Materials Science and Engineering: A, 374(1-2), 64-71. doi:10.1016/j.msea.2003.12.028

Trunec, M., Maca, K., & Shen, Z. (2008). Warm pressing of zirconia nanoparticles by the spark plasma sintering technique. Scripta Materialia, 59(1), 23-26. doi:10.1016/j.scriptamat.2008.02.015

Mazaheri, M., Hesabi, Z. R., Golestani-Fard, F., Mollazadeh, S., Jafari, S., & Sadrnezhaad, S. K. (2009). The Effect of Conformation Method and Sintering Technique on the Densification and Grain Growth of Nanocrystalline 8 mol% Yttria-Stabilized Zirconia. Journal of the American Ceramic Society, 92(5), 990-995. doi:10.1111/j.1551-2916.2009.02959.x

Goldstein, A., Travitzky, N., Singurindy, A., & Kravchik, M. (1999). Direct microwave sintering of yttria-stabilized zirconia at 2·45GHz. Journal of the European Ceramic Society, 19(12), 2067-2072. doi:10.1016/s0955-2219(99)00020-5

Upadhyaya, D. D., Ghosh, A., Gurumurthy, K. R., & Prasad, R. (2001). Microwave sintering of cubic zirconia. Ceramics International, 27(4), 415-418. doi:10.1016/s0272-8842(00)00096-1

Mizuno, M., Obata, S., Takayama, S., Ito, S., Kato, N., Hirai, T., & Sato, M. (2004). Sintering of alumina by 2.45 GHz microwave heating. Journal of the European Ceramic Society, 24(2), 387-391. doi:10.1016/s0955-2219(03)00217-6

Kuo, C.-T., Chen, C.-S., & Lin, I.-N. (2005). Microstructure and Nonlinear Properties of Microwave-Sintered ZnO-V2O5 Varistors: I, Effect of V2O5 Doping. Journal of the American Ceramic Society, 81(11), 2942-2948. doi:10.1111/j.1151-2916.1998.tb02717.x

Cong, L., Zheng, X., Hu, P., & Dan-feng Sun. (2007). Bi2O3Vaporization in Microwave-Sintered ZnO Varistors. Journal of the American Ceramic Society, 90(9), 2791-2794. doi:10.1111/j.1551-2916.2007.01848.x

Wang, J., Binner, J., Vaidhyanathan, B., Joomun, N., Kilner, J., Dimitrakis, G., & Cross, T. E. (2006). Evidence for the Microwave Effect During Hybrid Sintering. Journal of the American Ceramic Society, 89(6), 1977-1984. doi:10.1111/j.1551-2916.2006.00976.x

Mazaheri, M., Zahedi, A. M., & Hejazi, M. M. (2008). Processing of nanocrystalline 8mol% yttria-stabilized zirconia by conventional, microwave-assisted and two-step sintering. Materials Science and Engineering: A, 492(1-2), 261-267. doi:10.1016/j.msea.2008.03.023

Ebadzadeh, T., & Valefi, M. (2008). Microwave-assisted sintering of zircon. Journal of Alloys and Compounds, 448(1-2), 246-249. doi:10.1016/j.jallcom.2007.02.032

García-Gañán, C., Meléndez-Martínez, J. J., Gómez-García, D., & Domínguez-Rodríguez, A. (2006). Microwave sintering of nanocrystalline Ytzp (3 Mol%). Journal of Materials Science, 41(16), 5231-5234. doi:10.1007/s10853-006-0433-9

Cheng, J., Agrawal, D., Zhang, Y., & Roy, R. (2002). Microwave sintering of transparent alumina. Materials Letters, 56(4), 587-592. doi:10.1016/s0167-577x(02)00557-8

Nightingale, S. A., Dunne, D. P., & Worner, H. K. (1996). Sintering and grain growth of 3 mol% yttria zirconia in a microwave field. Journal of Materials Science, 31(19), 5039-5043. doi:10.1007/bf00355903

Nightingale, S. A., Worner, H. K., & Dunne, D. P. (2005). Microstructural Development during the Microwave Sintering of Yttria-Zirconia Ceramics. Journal of the American Ceramic Society, 80(2), 394-400. doi:10.1111/j.1151-2916.1997.tb02843.x

Janney, M. A., Calhoun, C. L., & Kimrey, H. D. (1992). Microwave Sintering of Solid Oxide Fuel Cell Materials: I, Zirconia-8 mol% Yttria. Journal of the American Ceramic Society, 75(2), 341-346. doi:10.1111/j.1151-2916.1992.tb08184.x

ANSTIS, G. R., CHANTIKUL, P., LAWN, B. R., & MARSHALL, D. B. (1981). A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements. Journal of the American Ceramic Society, 64(9), 533-538. doi:10.1111/j.1151-2916.1981.tb10320.x

Niihara, K., Morena, R., & Hasselman, D. P. H. (1982). Evaluation ofK Ic of brittle solids by the indentation method with low crack-to-indent ratios. Journal of Materials Science Letters, 1(1), 13-16. doi:10.1007/bf00724706

Yucheng, W., & Zhengyi, F. (2002). Study of temperature field in spark plasma sintering. Materials Science and Engineering: B, 90(1-2), 34-37. doi:10.1016/s0921-5107(01)00780-2

Acierno, D., Barba, A. A., & d’ Amore, M. (2003). Heat transfer phenomena during processing materials with microwave energy. Heat and Mass Transfer, 40(5), 413-420. doi:10.1007/s00231-003-0482-4

Thostenson, E. T., & Chou, T.-W. (1999). Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing, 30(9), 1055-1071. doi:10.1016/s1359-835x(99)00020-2

Matsui, K., Yoshida, H., & Ikuhara, Y. (2009). Isothermal Sintering Effects on Phase Separation and Grain Growth in Yttria-Stabilized Tetragonal Zirconia Polycrystal. Journal of the American Ceramic Society, 92(2), 467-475. doi:10.1111/j.1551-2916.2008.02861.x

Wilson, J., & Kunz, S. M. (1988). Microwave Sintering of Partially Stabilized Zirconia. Journal of the American Ceramic Society, 71(1), C-40-C-41. doi:10.1111/j.1151-2916.1988.tb05778.x

Upadhyaya, D. D., Ghosh, A., Dey, G. K., Prasad, R., & Suri, A. K. (2001). Journal of Materials Science, 36(19), 4707-4710. doi:10.1023/a:1017966703650

Winnubst, A. J. A., Keizer, K., & Burggraaf, A. J. (1983). Mechanical properties and fracture behaviour of ZrO2-Y2O3 ceramics. Journal of Materials Science, 18(7), 1958-1966. doi:10.1007/bf00554988

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem