- -

Interconversion algorithm between mechanical and dielectric relaxation measurements for acetate of cis- and trans-2-phenyl-5-hydroxymethyl-1,3-dioxane

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Interconversion algorithm between mechanical and dielectric relaxation measurements for acetate of cis- and trans-2-phenyl-5-hydroxymethyl-1,3-dioxane

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Bernabé, Abel es_ES
dc.contributor.author Lidon-Roger, Jose V. es_ES
dc.contributor.author Sanchis Sánchez, María Jesús es_ES
dc.contributor.author Díaz Calleja, Ricardo es_ES
dc.contributor.author Del Castillo, Luis Felipe es_ES
dc.date.accessioned 2016-05-26T12:31:06Z
dc.date.available 2016-05-26T12:31:06Z
dc.date.issued 2015-10-12
dc.identifier.issn 1539-3755
dc.identifier.uri http://hdl.handle.net/10251/64801
dc.description.abstract The dielectric and mechanical spectroscopies of acetate of cis- and trans-2-phenyl-5-hydroxymethyl-1,3- dioxane are reported in the frequency domain from 10−2 to 106 Hz. This ester has been selected in this study for its predominant á relaxation with regard to the â relaxation, which can be neglected. This study consists of determining an interconversion algorithm between dielectric and mechanical measurements, given by using a relation between rotational and translational complex viscosities. These important viscosities were obtained from measures of the dielectric complex permittivity and by dynamic mechanical analysis, respectively. The definitions of rotational and translational viscosities were evaluated by means of fractional calculus, by using the fit parameters of theHavriliak-Negami empirical model obtained in the dielectric and mechanical characterization of the á relaxation. This interconversion algorithm is a generalization of the break of the Stokes-Einstein-Debye relationship. It uses a power law with an exponent defined as the shape factor, which modifies the translational viscosity. Two others factors are introduced for the interconversion, a shift factor, which displaces the translational viscosity in the frequency domain, and a scale factor, which makes equal values of the two viscosities. In this paper, the shape factor has been identified as the relation between the slopes of the moduli of the complex viscosities at higher frequency. This is interpreted as the degree of kinetic coupling between the molecular rotation and translational movements. Alternatively, another interconversion algorithm has been expressed by means of dielectric and mechanical moduli. es_ES
dc.description.sponsorship The authors thank Professor Niels Boye Olsen and Jeppe C. Dyre from Roskilde Universitetcenter (Denmark) for dielectric and mechanical measurements. This work was supported by DGAPA-UNAM Projects No. IG-100315, SEP-CONACYT 154626, M.J.S. gratefully acknowledge the CICYT for grant MAT2012-3383. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review E es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject GLASS-FORMING LIQUIDS es_ES
dc.subject SUPERCOOLED LIQUIDS es_ES
dc.subject MODEL es_ES
dc.subject HETEROGENEITY es_ES
dc.subject TRANSITION es_ES
dc.subject DIFFUSION es_ES
dc.subject POLYMERS es_ES
dc.subject DYNAMICS es_ES
dc.subject BEHAVIOR es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Interconversion algorithm between mechanical and dielectric relaxation measurements for acetate of cis- and trans-2-phenyl-5-hydroxymethyl-1,3-dioxane es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevE.92.042307
dc.relation.projectID info:eu-repo/grantAgreement/CONACYT//154626/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IG100315/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-33483/ES/Nanohilos semiconductores y de polimeros con aplicaciones en energia/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation García Bernabé, A.; Lidon-Roger, JV.; Sanchis Sánchez, MJ.; Díaz Calleja, R.; Del Castillo, LF. (2015). Interconversion algorithm between mechanical and dielectric relaxation measurements for acetate of cis- and trans-2-phenyl-5-hydroxymethyl-1,3-dioxane. Physical Review E. 92(4). https://doi.org/10.1103/PhysRevE.92.042307 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevE.92.042307 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 92 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 301591 es_ES
dc.identifier.eissn 2470-0053
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Gemant, A. (1935). The conception of a complex viscosity and its application to dielectrics. Transactions of the Faraday Society, 31, 1582. doi:10.1039/tf9353101582 es_ES
dc.description.references DiMarzio, E. A., & Bishop, M. (1974). Connection between the macroscopic electric and mechanical susceptibilities. The Journal of Chemical Physics, 60(10), 3802-3811. doi:10.1063/1.1680822 es_ES
dc.description.references Bird, R. B., & Giacomin, A. J. (2012). Who conceived the «complex viscosity»? Rheologica Acta, 51(6), 481-486. doi:10.1007/s00397-012-0621-2 es_ES
dc.description.references Díaz-Calleja, R., Riande, E., & Román, J. S. (1993). Interconversion between mechanical and dielectric relaxations for poly(cyclohexyl acrylate). Journal of Polymer Science Part B: Polymer Physics, 31(6), 711-717. doi:10.1002/polb.1993.090310611 es_ES
dc.description.references Fatuzzo, E., & Mason, P. R. (1967). A calculation of the complex dielectric constant of a polar liquid by the librating molecule method. Proceedings of the Physical Society, 90(3), 729-740. doi:10.1088/0370-1328/90/3/318 es_ES
dc.description.references Zorn, R., Mopsik, F. I., McKenna, G. B., Willner, L., & Richter, D. (1997). Dynamics of polybutadienes with different microstructures. 2. Dielectric response and comparisons with rheological behavior. The Journal of Chemical Physics, 107(9), 3645-3655. doi:10.1063/1.474722 es_ES
dc.description.references Ferri, D., & Castellani, L. (2001). Fine Structure and Thermorheological Complexity of the Softening Dispersion in Styrene-Based Copolymers. Macromolecules, 34(12), 3973-3981. doi:10.1021/ma000328c es_ES
dc.description.references Niss, K., Jakobsen, B., & Olsen, N. B. (2005). Dielectric and shear mechanical relaxations in glass-forming liquids: A test of the Gemant-DiMarzio-Bishop model. The Journal of Chemical Physics, 123(23), 234510. doi:10.1063/1.2136886 es_ES
dc.description.references Christensen, T., & Olsen, N. B. (1994). Comparative measurements of the electrical and shear mechanical response functions in some supercooled liquids. Journal of Non-Crystalline Solids, 172-174, 357-361. doi:10.1016/0022-3093(94)90456-1 es_ES
dc.description.references Garcia-Bernabé, A., Sanchis, M. J., Díaz-Calleja, R., & del Castillo, L. F. (2009). Fractional Fokker–Planck equation approach for the interconversion between dielectric and mechanical measurements. Journal of Applied Physics, 106(1), 014912. doi:10.1063/1.3158555 es_ES
dc.description.references Sillescu, H. (1999). Heterogeneity at the glass transition: a review. Journal of Non-Crystalline Solids, 243(2-3), 81-108. doi:10.1016/s0022-3093(98)00831-x es_ES
dc.description.references Becker, S. R., Poole, P. H., & Starr, F. W. (2006). Fractional Stokes-Einstein and Debye-Stokes-Einstein Relations in a Network-Forming Liquid. Physical Review Letters, 97(5). doi:10.1103/physrevlett.97.055901 es_ES
dc.description.references Fujara, F., Geil, B., Sillescu, H., & Fleischer, G. (1992). Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition. Zeitschrift f�r Physik B Condensed Matter, 88(2), 195-204. doi:10.1007/bf01323572 es_ES
dc.description.references Glotzer, S. C., Novikov, V. N., & Schrøder, T. B. (2000). Time-dependent, four-point density correlation function description of dynamical heterogeneity and decoupling in supercooled liquids. The Journal of Chemical Physics, 112(2), 509-512. doi:10.1063/1.480541 es_ES
dc.description.references Nee, T., & Zwanzig, R. (1970). Theory of Dielectric Relaxation in Polar Liquids. The Journal of Chemical Physics, 52(12), 6353-6363. doi:10.1063/1.1672951 es_ES
dc.description.references Saiz, E., Riande, E., Díaz-Calleja, R., & Guzmán, J. (1997). Molecular Dynamics Simulations of the Time Dependent Dipolar Correlation Function for Esters Containing Substituted 1,3-Dioxacyclohexane Rings in Their Structure. The Journal of Physical Chemistry B, 101(50), 10949-10953. doi:10.1021/jp9717812 es_ES
dc.description.references Christensen, T., & Olsen, N. B. (1995). A rheometer for the measurement of a high shear modulus covering more than seven decades of frequency below 50 kHz. Review of Scientific Instruments, 66(10), 5019-5031. doi:10.1063/1.1146126 es_ES
dc.description.references Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700 es_ES
dc.description.references Sørensen, T. S. (1994). Nernst-Planckian Electrodynamics, the Excess Interfacial Impedance, and the Complex Permitivity of Two Semi-infinite Phases and of Lamellar Membranes. Journal of Colloid and Interface Science, 168(2), 437-450. doi:10.1006/jcis.1994.1440 es_ES
dc.description.references Dyre, J. C. (1988). The random free‐energy barrier model for ac conduction in disordered solids. Journal of Applied Physics, 64(5), 2456-2468. doi:10.1063/1.341681 es_ES
dc.description.references Havriliak, S., & Negami, S. (1967). A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer, 8, 161-210. doi:10.1016/0032-3861(67)90021-3 es_ES
dc.description.references Douglas, J. ., & Leporini, D. (1998). Obstruction model of the fractional Stokes–Einstein relation in glass-forming liquids. Journal of Non-Crystalline Solids, 235-237, 137-141. doi:10.1016/s0022-3093(98)00501-8 es_ES
dc.description.references Heymans, N. (2004). Fractional Calculus Description of Non-Linear Viscoelastic Behaviour of Polymers. Nonlinear Dynamics, 38(1-4), 221-231. doi:10.1007/s11071-004-3757-5 es_ES
dc.description.references Mazza, M. G., Giovambattista, N., Stanley, H. E., & Starr, F. W. (2007). Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water. Physical Review E, 76(3). doi:10.1103/physreve.76.031203 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem