Mostrar el registro completo del ítem
Folch-Fortuny, A.; Arteaga Moreno, FJ.; Ferrer Riquelme, AJ. (2015). PCA model building with missing data: New proposals and a comparative study. Chemometrics and Intelligent Laboratory Systems. 146:77-88. https://doi.org/10.1016/j.chemolab.2015.05.006
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64900
Título: | PCA model building with missing data: New proposals and a comparative study | |
Autor: | ARTEAGA MORENO, FRANCISCO JAVIER | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] This paper introduces new methods for building principal component analysis (PCA) models with missing data: projection to the model plane (PMP), known data regression (KDR), KDR with principal component regression ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://dx.doi.org/10.1016/j.chemolab.2015.05.006 | |
Código del Proyecto: |
|
|
Agradecimientos: |
Research in this study was partially supported by the Spanish Ministry of Science and Innovation and FEDER funds from the European Union through grant DPI2011-28112-C04-02, and the Spanish Ministry of Economy and Competitiveness ...[+]
|
|
Tipo: |
|