- -

Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mora Meliá, Daniel es_ES
dc.contributor.author Iglesias Rey, Pedro Luis es_ES
dc.contributor.author Martínez-Solano, F. Javier es_ES
dc.contributor.author Ballesteros-Pérez, P. es_ES
dc.date.accessioned 2016-06-03T07:41:46Z
dc.date.available 2016-06-03T07:41:46Z
dc.date.issued 2015-10
dc.identifier.issn 0920-4741
dc.identifier.uri http://hdl.handle.net/10251/65160
dc.description.abstract The pipe sizing of water networks via evolutionary algorithms is of great interest because it allows the selection of alternative economical solutions that meet a set of design requirements. However, available evolutionary methods are numerous, and methodologies to compare the performance of these methods beyond obtaining a minimal solution for a given problem are currently lacking. A methodology to compare algorithms based on an efficiency rate (E) is presented here and applied to the pipe-sizing problem of four medium-sized benchmark networks (Hanoi, New York Tunnel, GoYang and R-9 Joao Pessoa). E numerically determines the performance of a given algorithm while also considering the quality of the obtained solution and the required computational effort. From the wide range of available evolutionary algorithms, four algorithms were selected to implement the methodology: a PseudoGenetic Algorithm (PGA), Particle Swarm Optimization (PSO), a Harmony Search and a modified Shuffled Frog Leaping Algorithm (SFLA). After more than 500,000 simulations, a statistical analysis was performed based on the specific parameters each algorithm requires to operate, and finally, E was analyzed for each network and algorithm. The efficiency measure indicated that PGA is the most efficient algorithm for problems of greater complexity and that HS is the most efficient algorithm for less complex problems. However, the main contribution of this work is that the proposed efficiency ratio provides a neutral strategy to compare optimization algorithms and may be useful in the future to select the most appropriate algorithm for different types of optimization problems. es_ES
dc.description.sponsorship This research study was funded by the Chilean CONICYT grant under the Program FONDECYT Initiation for research in 2013 and 2014 (Project folio 11130666 and 11140128, respectively). en_EN
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Water Resources Management es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Evolutionary algorithms es_ES
dc.subject Design es_ES
dc.subject Water networks es_ES
dc.subject Efficiency es_ES
dc.subject Pipe sizing es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.title Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11269-015-1092-x
dc.relation.projectID info:eu-repo/grantAgreement/CONICYT//11140128/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICYT//11130666/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Mora Meliá, D.; Iglesias Rey, PL.; Martínez-Solano, FJ.; Ballesteros-Pérez, P. (2015). Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing. Water Resources Management. 29(13):4817-4831. https://doi.org/10.1007/s11269-015-1092-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11269-015-1092-x es_ES
dc.description.upvformatpinicio 4817 es_ES
dc.description.upvformatpfin 4831 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 13 es_ES
dc.relation.senia 301817 es_ES
dc.identifier.eissn 1573-1650
dc.contributor.funder Comisión Nacional de Investigación Científica y Tecnológica, Chile es_ES
dc.description.references Afshar A, Kazemi H, Saadatpour M (2011) Particle swarm optimization for automatic calibration of large scale water quality model (CE-QUAL-W2): application to Karkheh Reservoir, Iran. Water Resour Manag 25:2613–2632. doi: 10.1007/s11269-011-9829-7 es_ES
dc.description.references Afshar A, Shojaei N, Sagharjooghifarahani M (2013) Multiobjective calibration of reservoir water quality modeling using Multiobjective Particle Swarm Optimization (MOPSO). Water Resour Manag 27:1931–1947. doi: 10.1007/s11269-013-0263-x es_ES
dc.description.references Alperovits E, Shamir U (1977) Design of optimal water distribution systems. Water Resour Res 13:885–900. doi: 10.1029/WR013i006p00885 es_ES
dc.description.references Araujo LS, Ramos H, Coelho ST (2006) Pressure control for leakage minimisation in water distribution systems management. Water Resour Manag 20:133–149. doi: 10.1007/s11269-006-4635-3 es_ES
dc.description.references Artita KS, Kaini P, Nicklow JW (2013) Examining the possibilities: generating alternative watershed-scale BMP designs with evolutionary algorithms. Water Resour Manag 27:3849–3863. doi: 10.1007/s11269-013-0375-3 es_ES
dc.description.references Barlow E, Tanyimboh TT (2014) Multiobjective memetic algorithm applied to the optimisation of water distribution systems. Water Resour Manag 28:2229–2242. doi: 10.1007/s11269-014-0608-0 es_ES
dc.description.references Chung G, Lansey K (2008) Application of the shuffled frog leaping algorithm for the optimization of a general large-scale water supply system. Water Resour Manag 23:797–823. doi: 10.1007/s11269-008-9300-6 es_ES
dc.description.references Elbeltagi E, Hegazy T, Grierson D (2007) A modified shuffled frog-leaping optimization algorithm: applications to project management. Struct Infrastruct Eng 3:53–60. doi: 10.1080/15732470500254535 es_ES
dc.description.references Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manag 129:210–225. doi: 10.1061/(ASCE)0733-9496(2003)129:3(210) es_ES
dc.description.references Fujiwara O, Khang DB (1990) A two-phase decomposition method for optimal design of looped water distribution networks. Water Resour Res 26:539–549. doi: 10.1029/WR026i004p00539 es_ES
dc.description.references Geem ZW (2006) Optimal cost design of water distribution networks using harmony search. Eng Optim 38:259–277. doi: 10.1080/03052150500467430 es_ES
dc.description.references Gomes H, de Bezerra STM, de Carvalho P, Salvino M (2009) Optimal dimensioning model of water distribution systems. Water SA 35:421–431. doi: 10.4314/wsa.v35i4 es_ES
dc.description.references Haddad OB, Tabari MMR, Fallah-Mehdipour E, Mariño MA (2013) Groundwater model calibration by meta-heuristic algorithms. Water Resour Manag 27:2515–2529. doi: 10.1007/s11269-013-0300-9 es_ES
dc.description.references Iglesias-Rey PL, Martínez-Solano FJ, Mora-Meliá D, Martínez-Solano PD (2014) BBLAWN: a combined use of best management practices and an optimization model based on a pseudo-genetic algorithm. Procedia Eng 89:29–36. doi: 10.1016/j.proeng.2014.11.156 es_ES
dc.description.references Jin Y-X, Cheng H-Z, Yan J, Zhang L (2007) New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electr Power Syst Res 77:227–233. doi: 10.1016/j.epsr.2006.02.016 es_ES
dc.description.references Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks. IEEE, pp 1942–1948. doi: 10.1109/ICNN.1995.488968 es_ES
dc.description.references Kim JH, Kim TG, Kim JH, Yoon YN (1994) A study on the pipe network system design using non-linear programming. J Korean Water Resour Assoc 27:59–67 es_ES
dc.description.references Kollat JB, Reed PM (2006) Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design. Adv Water Resour 29:792–807. doi: 10.1016/j.advwatres.2005.07.010 es_ES
dc.description.references Louati MH, Benabdallah S, Lebdi F, Milutin D (2011) Application of a genetic algorithm for the optimization of a complex reservoir system in tunisia. Water Resour Manag 25:2387–2404. doi: 10.1007/s11269-011-9814-1 es_ES
dc.description.references Marchi A, Dandy G, Wilkins A, Rohrlach H (2014) Methodology for Comparing Evolutionary Algorithms for Optimization of Water Distribution Systems. doi: 10.1061/(ASCE)WR.1943-5452.0000321 es_ES
dc.description.references Mora-Melia D, Iglesias-Rey P, Fuertes-Miquel V, Martinez-Solano F (2010) Application of the harmony search algorithm to water distribution networks design. Taylor & Francis Group. pp 265–271. doi: 10.1201/b10999-67 es_ES
dc.description.references Mora-Melia D, Iglesias-Rey PL, Martinez-Solano FJ, Fuertes-Miquel VS (2013) Design of water distribution networks using a pseudo-genetic algorithm and sensitivity of genetic operators. Water Resour Manag 27:4149–4162. doi: 10.1007/s11269-013-0400-6 es_ES
dc.description.references Ostadrahimi L, Mariño MA, Afshar A (2011) Multi-reservoir operation rules: multi-swarm PSO-based optimization approach. Water Resour Manag 26:407–427. doi: 10.1007/s11269-011-9924-9 es_ES
dc.description.references Rossman LA (2000) EPANET 2.0 User’s manual. EPA/600/R-00/057, Water Supply and Water Resources Div., National Risk Management Research Laboratory, Cincinnatti (USA) es_ES
dc.description.references Savic DA, Walters GA (1997) Genetic algorithms for least-cost design of water distribution networks. J Water Resour Plan Manag 123:67–77. doi: 10.1061/(ASCE)0733-9496(1997)123:2(67) es_ES
dc.description.references Schaake J, Lai FH (1969) Linear programming and dynamic programming application to water distribution network design. M.I.T. Hydrodynamics Laboratory, Cambridge es_ES
dc.description.references Wang Q, Guidolin M, Savic D, Kapelan Z (2014) Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front. J Water Resour Plan Manag 04014060. doi: 10.1061/(ASCE)WR.1943-5452.0000460 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem