- -

Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salazar-Serrano, L.J. es_ES
dc.contributor.author Barrera Vilar, David es_ES
dc.contributor.author Amaya Ocampo, Waldimar Alexander es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.contributor.author Pruneri, V.. es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.contributor.author Torres, J.P. es_ES
dc.date.accessioned 2016-06-13T08:53:03Z
dc.date.available 2016-06-13T08:53:03Z
dc.date.issued 2015-09-01
dc.identifier.issn 0146-9592
dc.identifier.uri http://hdl.handle.net/10251/65717
dc.description "This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.40.003962. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law" es_ES
dc.description.abstract We present a proof-of-concept experiment aimed at increasing the sensitivity of Fiber-Bragg-gratings temperature sensors by making use of a weak-value-amplification scheme. The technique requires only linear optics elements for its implementation and appears as a promising method for increasing the sensitivity than state-of the-art sensors can currently provide. The device implemented here is able to generate a shift of the centroid of the spectrum of a pulse of ∼0.035 nm∕°C, a nearly fourfold increase in sensitivity over the same fiber-Bragg-grating system interrogated using standard methods. es_ES
dc.description.sponsorship Severo Ochoa program; Fundacio Privada Cellex, Barcelona; Research Excellency Award Program GVA PROMETEO 2013/012; Spanish MCINN (TEC2014-53727-C2-1-R). en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Lasers es_ES
dc.subject Distributed-feedback es_ES
dc.subject Temperature es_ES
dc.subject Fiber optics sensors es_ES
dc.subject Interferometry es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OL.40.003962
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-53727-C2-1-R/ES/DISPOSITIVOS OPTOELECTRONICOS Y FOTONICOS BASADOS EN NANOMATERIALES AVANZADOS: DESDE NUEVOS CONCEPTOS DE NANOFOTONICA HASTA PROCESOS Y DISPOSITIVOS ?VERDES"/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Salazar-Serrano, L.; Barrera Vilar, D.; Amaya Ocampo, WA.; Sales Maicas, S.; Pruneri, V.; Capmany Francoy, J.; Torres, J. (2015). Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification. Optics Letters. 40(17):3962-3965. https://doi.org/10.1364/OL.40.003962 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OL.40.003962 es_ES
dc.description.upvformatpinicio 3962 es_ES
dc.description.upvformatpfin 3965 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 40 es_ES
dc.description.issue 17 es_ES
dc.relation.senia 294535 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundación Cellex es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Aharonov, Y., Albert, D. Z., & Vaidman, L. (1988). How the result of a measurement of a component of the spin of a spin-1/2particle can turn out to be 100. Physical Review Letters, 60(14), 1351-1354. doi:10.1103/physrevlett.60.1351 es_ES
dc.description.references Duck, I. M., Stevenson, P. M., & Sudarshan, E. C. G. (1989). The sense in which a «weak measurement» of a spin-½ particle’s spin component yields a value 100. Physical Review D, 40(6), 2112-2117. doi:10.1103/physrevd.40.2112 es_ES
dc.description.references Howell, J. C., Starling, D. J., Dixon, P. B., Vudyasetu, P. K., & Jordan, A. N. (2010). Interferometric weak value deflections: Quantum and classical treatments. Physical Review A, 81(3). doi:10.1103/physreva.81.033813 es_ES
dc.description.references Torres, J. P., Puentes, G., Hermosa, N., & Salazar-Serrano, L. J. (2012). Weak interference in the high-signal regime. Optics Express, 20(17), 18869. doi:10.1364/oe.20.018869 es_ES
dc.description.references Ritchie, N. W. M., Story, J. G., & Hulet, R. G. (1991). Realization of a measurement of a ‘‘weak value’’. Physical Review Letters, 66(9), 1107-1110. doi:10.1103/physrevlett.66.1107 es_ES
dc.description.references Hosten, O., & Kwiat, P. (2008). Observation of the Spin Hall Effect of Light via Weak Measurements. Science, 319(5864), 787-790. doi:10.1126/science.1152697 es_ES
dc.description.references Dixon, P. B., Starling, D. J., Jordan, A. N., & Howell, J. C. (2009). Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification. Physical Review Letters, 102(17). doi:10.1103/physrevlett.102.173601 es_ES
dc.description.references Starling, D. J., Dixon, P. B., Jordan, A. N., & Howell, J. C. (2010). Precision frequency measurements with interferometric weak values. Physical Review A, 82(6). doi:10.1103/physreva.82.063822 es_ES
dc.description.references Xu, X.-Y., Kedem, Y., Sun, K., Vaidman, L., Li, C.-F., & Guo, G.-C. (2013). Phase Estimation with Weak Measurement Using a White Light Source. Physical Review Letters, 111(3). doi:10.1103/physrevlett.111.033604 es_ES
dc.description.references Salazar-Serrano, L. J., Janner, D., Brunner, N., Pruneri, V., & Torres, J. P. (2014). Measurement of sub-pulse-width temporal delays via spectral interference induced by weak value amplification. Physical Review A, 89(1). doi:10.1103/physreva.89.012126 es_ES
dc.description.references TAHIR, B. A., ALI, J., & ABDUL RAHMAN, R. (2009). FIBER BRAGG GRATING BASED SYSTEM FOR TEMPERATURE MEASUREMENTS. International Journal of Modern Physics B, 23(10), 2349-2356. doi:10.1142/s0217979209052091 es_ES
dc.description.references Ricchiuti, A. L., Barrera, D., Nonaka, K., & Sales, S. (2014). Temperature gradient sensor based on a long-fiber Bragg grating and time-frequency analysis. Optics Letters, 39(19), 5729. doi:10.1364/ol.39.005729 es_ES
dc.description.references Egan, P., & Stone, J. A. (2012). Weak-value thermostat with 02 mK precision. Optics Letters, 37(23), 4991. doi:10.1364/ol.37.004991 es_ES
dc.description.references Salazar-Serrano, L. J., Valencia, A., & Torres, J. P. (2014). Observation of spectral interference for any path difference in an interferometer. Optics Letters, 39(15), 4478. doi:10.1364/ol.39.004478 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem