Mostrar el registro sencillo del ítem
dc.contributor.author | Desantes Fernández, José Mª | es_ES |
dc.contributor.author | Salvador Rubio, Francisco Javier | es_ES |
dc.contributor.author | Carreres Talens, Marcos | es_ES |
dc.contributor.author | Martínez López, Jorge | es_ES |
dc.date.accessioned | 2016-06-15T11:14:54Z | |
dc.date.available | 2016-06-15T11:14:54Z | |
dc.date.issued | 2015-03 | |
dc.identifier.issn | 0954-4070 | |
dc.identifier.uri | http://hdl.handle.net/10251/65966 | |
dc.description.abstract | The cavitation phenomenon has a strong influence on the internal flow and spray development in diesel injector nozzles. Despite its importance, there are many aspects which still remain unclear, especially for partial needle lifts when the injector is in the opening and closing phases. For that reason, the current paper is focused on the influence of the needle lift on the internal flow in a diesel nozzle. This study was carried out with three-dimensional simulations at a high injection pressure (160 MPa) using a homogeneous equilibrium model implemented in OpenFOAM to model the cavitation phenomenon. The nozzle was simulated with large-eddy simulation methods at six different needle lifts (10 mm, 30 mm, 50 mm, 75 mm, 100 mm and 250 mm), providing relevant information about the evolution of the internal flow, the turbulence development (the vorticity, the turbulence–cavitation interaction and the turbulent structures) and the flow characteristics in the nozzle outlet (the mass flow, the momentum flux and the effective velocity) with the needle position. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications (UK and US) | es_ES |
dc.relation.ispartof | Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cavitation | es_ES |
dc.subject | Needle lift | es_ES |
dc.subject | Large-eddy simulations | es_ES |
dc.subject | Diesel | es_ES |
dc.subject | Nozzle | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Large-eddy simulation analysis of the influence of the needle lift on the cavitation in diesel injector nozzles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0954407014542627 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Desantes Fernández, JM.; Salvador Rubio, FJ.; Carreres Talens, M.; Martínez López, J. (2015). Large-eddy simulation analysis of the influence of the needle lift on the cavitation in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 229(4):407-423. doi:10.1177/0954407014542627 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1177/0954407014542627 | es_ES |
dc.description.upvformatpinicio | 407 | es_ES |
dc.description.upvformatpfin | 423 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 229 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 282530 | es_ES |
dc.identifier.eissn | 2041-2991 | |
dc.description.references | Faeth, G. ., Hsiang, L.-P., & Wu, P.-K. (1995). Structure and breakup properties of sprays. International Journal of Multiphase Flow, 21, 99-127. doi:10.1016/0301-9322(95)00059-7 | es_ES |
dc.description.references | Park, S. H., Suh, H. K., & Lee, C. S. (2009). Effect of Bioethanol−Biodiesel Blending Ratio on Fuel Spray Behavior and Atomization Characteristics. Energy & Fuels, 23(8), 4092-4098. doi:10.1021/ef900068a | es_ES |
dc.description.references | PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009 | es_ES |
dc.description.references | Suh, H. K., & Lee, C. S. (2008). Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics. International Journal of Heat and Fluid Flow, 29(4), 1001-1009. doi:10.1016/j.ijheatfluidflow.2008.03.014 | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Gimeno, J., & de la Morena, J. (2009). Effects of nozzle geometry on direct injection diesel engine combustion process. Applied Thermal Engineering, 29(10), 2051-2060. doi:10.1016/j.applthermaleng.2008.10.009 | es_ES |
dc.description.references | Park, S. H., Kim, S. H., & Lee, C. S. (2009). Mixing Stability and Spray Behavior Characteristics of Diesel−Ethanol−Methyl Ester Blended Fuels in a Common-Rail Diesel Injection System. Energy & Fuels, 23(10), 5228-5235. doi:10.1021/ef9004847 | es_ES |
dc.description.references | Desantes, J. M., Payri, R., Salvador, F. J., & Gil, A. (2006). Development and validation of a theoretical model for diesel spray penetration. Fuel, 85(7-8), 910-917. doi:10.1016/j.fuel.2005.10.023 | es_ES |
dc.description.references | Desantes, J. M., Payri, R., Garcia, J. M., & Salvador, F. J. (2007). A contribution to the understanding of isothermal diesel spray dynamics. Fuel, 86(7-8), 1093-1101. doi:10.1016/j.fuel.2006.10.011 | es_ES |
dc.description.references | Badock, C., Wirth, R., Fath, A., & Leipertz, A. (1999). Investigation of cavitation in real size diesel injection nozzles. International Journal of Heat and Fluid Flow, 20(5), 538-544. doi:10.1016/s0142-727x(99)00043-0 | es_ES |
dc.description.references | Som, S., Aggarwal, S. K., El-Hannouny, E. M., & Longman, D. E. (2010). Investigation of Nozzle Flow and Cavitation Characteristics in a Diesel Injector. Journal of Engineering for Gas Turbines and Power, 132(4). doi:10.1115/1.3203146 | es_ES |
dc.description.references | Macian, V., Payri, R., Margot, X., & Salvador, F. J. (2003). A CFD ANALYSIS OF THE INFLUENCE OF DIESEL NOZZLE GEOMETRY ON THE INCEPTION OF CAVITATION. Atomization and Sprays, 13(5-6), 579-604. doi:10.1615/atomizspr.v13.i56.80 | es_ES |
dc.description.references | Alajbegovic, A., Meister, G., Greif, D., & Basara, B. (2002). Three phase cavitating flows in high-pressure swirl injectors. Experimental Thermal and Fluid Science, 26(6-7), 677-681. doi:10.1016/s0894-1777(02)00179-6 | es_ES |
dc.description.references | Unverdi, S. O., & Tryggvason, G. (1992). A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics, 100(1), 25-37. doi:10.1016/0021-9991(92)90307-k | es_ES |
dc.description.references | Brackbill, J. ., Kothe, D. ., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335-354. doi:10.1016/0021-9991(92)90240-y | es_ES |
dc.description.references | Plesset M, Devine R. Effect of exposure time on cavitation damage. Report (Office of Naval Research Contract Nonr-220(28)), California Institute of Technology, Pasadena, California, USA, 1965. | es_ES |
dc.description.references | Chen, Y., & Heister, S. D. (1996). MODELING CAVITATING FLOWS IN DIESEL INJECTORS. Atomization and Sprays, 6(6), 709-726. doi:10.1615/atomizspr.v6.i6.50 | es_ES |
dc.description.references | Vortmann, C., Schnerr, G. H., & Seelecke, S. (2003). Thermodynamic modeling and simulation of cavitating nozzle flow. International Journal of Heat and Fluid Flow, 24(5), 774-783. doi:10.1016/s0142-727x(03)00003-1 | es_ES |
dc.description.references | Echouchene, F., Belmabrouk, H., Le Penven, L., & Buffat, M. (2011). Numerical simulation of wall roughness effects in cavitating flow. International Journal of Heat and Fluid Flow, 32(5), 1068-1075. doi:10.1016/j.ijheatfluidflow.2011.05.010 | es_ES |
dc.description.references | Salvador, F. J., Romero, J.-V., Roselló, M.-D., & Martínez-López, J. (2010). Validation of a code for modeling cavitation phenomena in Diesel injector nozzles. Mathematical and Computer Modelling, 52(7-8), 1123-1132. doi:10.1016/j.mcm.2010.02.027 | es_ES |
dc.description.references | Salvador, F. J., Hoyas, S., Novella, R., & Martínez-López, J. (2011). Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(4), 545-563. doi:10.1177/09544070jauto1569 | es_ES |
dc.description.references | Payri, F., Payri, R., Salvador, F. J., & Martínez-López, J. (2012). A contribution to the understanding of cavitation effects in Diesel injector nozzles through a combined experimental and computational investigation. Computers & Fluids, 58, 88-101. doi:10.1016/j.compfluid.2012.01.005 | es_ES |
dc.description.references | Salvador, F. J., Martínez-López, J., Caballer, M., & De Alfonso, C. (2013). Study of the influence of the needle lift on the internal flow and cavitation phenomenon in diesel injector nozzles by CFD using RANS methods. Energy Conversion and Management, 66, 246-256. doi:10.1016/j.enconman.2012.10.011 | es_ES |
dc.description.references | Salvador, F. J., Martínez-López, J., Romero, J.-V., & Roselló, M.-D. (2013). Computational study of the cavitation phenomenon and its interaction with the turbulence developed in diesel injector nozzles by Large Eddy Simulation (LES). Mathematical and Computer Modelling, 57(7-8), 1656-1662. doi:10.1016/j.mcm.2011.10.050 | es_ES |
dc.description.references | Piomelli, U. (1999). Large-eddy simulation: achievements and challenges. Progress in Aerospace Sciences, 35(4), 335-362. doi:10.1016/s0376-0421(98)00014-1 | es_ES |
dc.description.references | Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. doi:10.1016/0045-7825(74)90029-2 | es_ES |
dc.description.references | Payri, F., Bermúdez, V., Payri, R., & Salvador, F. J. (2004). The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel, 83(4-5), 419-431. doi:10.1016/j.fuel.2003.09.010 | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Gimeno, J., & de la Morena, J. (2009). Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber. International Journal of Heat and Fluid Flow, 30(4), 768-777. doi:10.1016/j.ijheatfluidflow.2009.03.011 | es_ES |
dc.description.references | Martínez López, J. (s. f.). Estudio computacional de la influencia del levantamiento de aguja sobre el flujo interno y el fenómeno de la cavitación en toberas de inyección diésel. doi:10.4995/thesis/10251/29291 | es_ES |
dc.description.references | Tabor, G. R., & Baba-Ahmadi, M. H. (2010). Inlet conditions for large eddy simulation: A review. Computers & Fluids, 39(4), 553-567. doi:10.1016/j.compfluid.2009.10.007 | es_ES |
dc.description.references | Payri, R., Gimeno, J., Marti-Aldaravi, P., & Bracho, G. (2013). Study of the influence of the inlet boundary conditions in a LES simulation of internal flow in a diesel injector. Mathematical and Computer Modelling, 57(7-8), 1709-1715. doi:10.1016/j.mcm.2011.11.019 | es_ES |
dc.description.references | de Villiers E. The potential of large eddy simulation for the modeling of wall bounded flows. PhD Thesis, Imperial College of Science, Technology and Medicine, London, UK, 2006. | es_ES |
dc.description.references | Lee, J. W., Min, K. D., Kang, K. Y., Bae, C. S., Giannadakis, E., Gavaises, M., & Arcoumanis, C. (2006). Effect of piezo-driven and solenoid-driven needle opening of common-rail diesel injectors on internal nozzle flow and spray development. International Journal of Engine Research, 7(6), 489-502. doi:10.1243/14680874jer00806 | es_ES |
dc.description.references | Desantes, J. M., Payri, R., Salvador, F. J., & De la Morena, J. (2010). Influence of cavitation phenomenon on primary break-up and spray behavior at stationary conditions. Fuel, 89(10), 3033-3041. doi:10.1016/j.fuel.2010.06.004 | es_ES |
dc.description.references | Lesieur, M., Métais, O., & Comte, P. (2005). Large-Eddy Simulations of Turbulence. doi:10.1017/cbo9780511755507 | es_ES |
dc.description.references | Sagaut, P. (2001). Large Eddy Simulation for Incompressible Flows. Scientific Computation. doi:10.1007/978-3-662-04416-2 | es_ES |