- -

Large-eddy simulation analysis of the influence of the needle lift on the cavitation in diesel injector nozzles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Large-eddy simulation analysis of the influence of the needle lift on the cavitation in diesel injector nozzles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Desantes Fernández, José Mª es_ES
dc.contributor.author Salvador Rubio, Francisco Javier es_ES
dc.contributor.author Carreres Talens, Marcos es_ES
dc.contributor.author Martínez López, Jorge es_ES
dc.date.accessioned 2016-06-15T11:14:54Z
dc.date.available 2016-06-15T11:14:54Z
dc.date.issued 2015-03
dc.identifier.issn 0954-4070
dc.identifier.uri http://hdl.handle.net/10251/65966
dc.description.abstract The cavitation phenomenon has a strong influence on the internal flow and spray development in diesel injector nozzles. Despite its importance, there are many aspects which still remain unclear, especially for partial needle lifts when the injector is in the opening and closing phases. For that reason, the current paper is focused on the influence of the needle lift on the internal flow in a diesel nozzle. This study was carried out with three-dimensional simulations at a high injection pressure (160 MPa) using a homogeneous equilibrium model implemented in OpenFOAM to model the cavitation phenomenon. The nozzle was simulated with large-eddy simulation methods at six different needle lifts (10 mm, 30 mm, 50 mm, 75 mm, 100 mm and 250 mm), providing relevant information about the evolution of the internal flow, the turbulence development (the vorticity, the turbulence–cavitation interaction and the turbulent structures) and the flow characteristics in the nozzle outlet (the mass flow, the momentum flux and the effective velocity) with the needle position. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications (UK and US) es_ES
dc.relation.ispartof Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cavitation es_ES
dc.subject Needle lift es_ES
dc.subject Large-eddy simulations es_ES
dc.subject Diesel es_ES
dc.subject Nozzle es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Large-eddy simulation analysis of the influence of the needle lift on the cavitation in diesel injector nozzles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0954407014542627
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Desantes Fernández, JM.; Salvador Rubio, FJ.; Carreres Talens, M.; Martínez López, J. (2015). Large-eddy simulation analysis of the influence of the needle lift on the cavitation in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 229(4):407-423. doi:10.1177/0954407014542627 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1177/0954407014542627 es_ES
dc.description.upvformatpinicio 407 es_ES
dc.description.upvformatpfin 423 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 229 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 282530 es_ES
dc.identifier.eissn 2041-2991
dc.description.references Faeth, G. ., Hsiang, L.-P., & Wu, P.-K. (1995). Structure and breakup properties of sprays. International Journal of Multiphase Flow, 21, 99-127. doi:10.1016/0301-9322(95)00059-7 es_ES
dc.description.references Park, S. H., Suh, H. K., & Lee, C. S. (2009). Effect of Bioethanol−Biodiesel Blending Ratio on Fuel Spray Behavior and Atomization Characteristics. Energy & Fuels, 23(8), 4092-4098. doi:10.1021/ef900068a es_ES
dc.description.references PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009 es_ES
dc.description.references Suh, H. K., & Lee, C. S. (2008). Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics. International Journal of Heat and Fluid Flow, 29(4), 1001-1009. doi:10.1016/j.ijheatfluidflow.2008.03.014 es_ES
dc.description.references Payri, R., Salvador, F. J., Gimeno, J., & de la Morena, J. (2009). Effects of nozzle geometry on direct injection diesel engine combustion process. Applied Thermal Engineering, 29(10), 2051-2060. doi:10.1016/j.applthermaleng.2008.10.009 es_ES
dc.description.references Park, S. H., Kim, S. H., & Lee, C. S. (2009). Mixing Stability and Spray Behavior Characteristics of Diesel−Ethanol−Methyl Ester Blended Fuels in a Common-Rail Diesel Injection System. Energy & Fuels, 23(10), 5228-5235. doi:10.1021/ef9004847 es_ES
dc.description.references Desantes, J. M., Payri, R., Salvador, F. J., & Gil, A. (2006). Development and validation of a theoretical model for diesel spray penetration. Fuel, 85(7-8), 910-917. doi:10.1016/j.fuel.2005.10.023 es_ES
dc.description.references Desantes, J. M., Payri, R., Garcia, J. M., & Salvador, F. J. (2007). A contribution to the understanding of isothermal diesel spray dynamics. Fuel, 86(7-8), 1093-1101. doi:10.1016/j.fuel.2006.10.011 es_ES
dc.description.references Badock, C., Wirth, R., Fath, A., & Leipertz, A. (1999). Investigation of cavitation in real size diesel injection nozzles. International Journal of Heat and Fluid Flow, 20(5), 538-544. doi:10.1016/s0142-727x(99)00043-0 es_ES
dc.description.references Som, S., Aggarwal, S. K., El-Hannouny, E. M., & Longman, D. E. (2010). Investigation of Nozzle Flow and Cavitation Characteristics in a Diesel Injector. Journal of Engineering for Gas Turbines and Power, 132(4). doi:10.1115/1.3203146 es_ES
dc.description.references Macian, V., Payri, R., Margot, X., & Salvador, F. J. (2003). A CFD ANALYSIS OF THE INFLUENCE OF DIESEL NOZZLE GEOMETRY ON THE INCEPTION OF CAVITATION. Atomization and Sprays, 13(5-6), 579-604. doi:10.1615/atomizspr.v13.i56.80 es_ES
dc.description.references Alajbegovic, A., Meister, G., Greif, D., & Basara, B. (2002). Three phase cavitating flows in high-pressure swirl injectors. Experimental Thermal and Fluid Science, 26(6-7), 677-681. doi:10.1016/s0894-1777(02)00179-6 es_ES
dc.description.references Unverdi, S. O., & Tryggvason, G. (1992). A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics, 100(1), 25-37. doi:10.1016/0021-9991(92)90307-k es_ES
dc.description.references Brackbill, J. ., Kothe, D. ., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335-354. doi:10.1016/0021-9991(92)90240-y es_ES
dc.description.references Plesset M, Devine R. Effect of exposure time on cavitation damage. Report (Office of Naval Research Contract Nonr-220(28)), California Institute of Technology, Pasadena, California, USA, 1965. es_ES
dc.description.references Chen, Y., & Heister, S. D. (1996). MODELING CAVITATING FLOWS IN DIESEL INJECTORS. Atomization and Sprays, 6(6), 709-726. doi:10.1615/atomizspr.v6.i6.50 es_ES
dc.description.references Vortmann, C., Schnerr, G. H., & Seelecke, S. (2003). Thermodynamic modeling and simulation of cavitating nozzle flow. International Journal of Heat and Fluid Flow, 24(5), 774-783. doi:10.1016/s0142-727x(03)00003-1 es_ES
dc.description.references Echouchene, F., Belmabrouk, H., Le Penven, L., & Buffat, M. (2011). Numerical simulation of wall roughness effects in cavitating flow. International Journal of Heat and Fluid Flow, 32(5), 1068-1075. doi:10.1016/j.ijheatfluidflow.2011.05.010 es_ES
dc.description.references Salvador, F. J., Romero, J.-V., Roselló, M.-D., & Martínez-López, J. (2010). Validation of a code for modeling cavitation phenomena in Diesel injector nozzles. Mathematical and Computer Modelling, 52(7-8), 1123-1132. doi:10.1016/j.mcm.2010.02.027 es_ES
dc.description.references Salvador, F. J., Hoyas, S., Novella, R., & Martínez-López, J. (2011). Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(4), 545-563. doi:10.1177/09544070jauto1569 es_ES
dc.description.references Payri, F., Payri, R., Salvador, F. J., & Martínez-López, J. (2012). A contribution to the understanding of cavitation effects in Diesel injector nozzles through a combined experimental and computational investigation. Computers & Fluids, 58, 88-101. doi:10.1016/j.compfluid.2012.01.005 es_ES
dc.description.references Salvador, F. J., Martínez-López, J., Caballer, M., & De Alfonso, C. (2013). Study of the influence of the needle lift on the internal flow and cavitation phenomenon in diesel injector nozzles by CFD using RANS methods. Energy Conversion and Management, 66, 246-256. doi:10.1016/j.enconman.2012.10.011 es_ES
dc.description.references Salvador, F. J., Martínez-López, J., Romero, J.-V., & Roselló, M.-D. (2013). Computational study of the cavitation phenomenon and its interaction with the turbulence developed in diesel injector nozzles by Large Eddy Simulation (LES). Mathematical and Computer Modelling, 57(7-8), 1656-1662. doi:10.1016/j.mcm.2011.10.050 es_ES
dc.description.references Piomelli, U. (1999). Large-eddy simulation: achievements and challenges. Progress in Aerospace Sciences, 35(4), 335-362. doi:10.1016/s0376-0421(98)00014-1 es_ES
dc.description.references Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. doi:10.1016/0045-7825(74)90029-2 es_ES
dc.description.references Payri, F., Bermúdez, V., Payri, R., & Salvador, F. J. (2004). The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel, 83(4-5), 419-431. doi:10.1016/j.fuel.2003.09.010 es_ES
dc.description.references Payri, R., Salvador, F. J., Gimeno, J., & de la Morena, J. (2009). Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber. International Journal of Heat and Fluid Flow, 30(4), 768-777. doi:10.1016/j.ijheatfluidflow.2009.03.011 es_ES
dc.description.references Martínez López, J. (s. f.). Estudio computacional de la influencia del levantamiento de aguja sobre el flujo interno y el fenómeno de la cavitación en toberas de inyección diésel. doi:10.4995/thesis/10251/29291 es_ES
dc.description.references Tabor, G. R., & Baba-Ahmadi, M. H. (2010). Inlet conditions for large eddy simulation: A review. Computers & Fluids, 39(4), 553-567. doi:10.1016/j.compfluid.2009.10.007 es_ES
dc.description.references Payri, R., Gimeno, J., Marti-Aldaravi, P., & Bracho, G. (2013). Study of the influence of the inlet boundary conditions in a LES simulation of internal flow in a diesel injector. Mathematical and Computer Modelling, 57(7-8), 1709-1715. doi:10.1016/j.mcm.2011.11.019 es_ES
dc.description.references de Villiers E. The potential of large eddy simulation for the modeling of wall bounded flows. PhD Thesis, Imperial College of Science, Technology and Medicine, London, UK, 2006. es_ES
dc.description.references Lee, J. W., Min, K. D., Kang, K. Y., Bae, C. S., Giannadakis, E., Gavaises, M., & Arcoumanis, C. (2006). Effect of piezo-driven and solenoid-driven needle opening of common-rail diesel injectors on internal nozzle flow and spray development. International Journal of Engine Research, 7(6), 489-502. doi:10.1243/14680874jer00806 es_ES
dc.description.references Desantes, J. M., Payri, R., Salvador, F. J., & De la Morena, J. (2010). Influence of cavitation phenomenon on primary break-up and spray behavior at stationary conditions. Fuel, 89(10), 3033-3041. doi:10.1016/j.fuel.2010.06.004 es_ES
dc.description.references Lesieur, M., Métais, O., & Comte, P. (2005). Large-Eddy Simulations of Turbulence. doi:10.1017/cbo9780511755507 es_ES
dc.description.references Sagaut, P. (2001). Large Eddy Simulation for Incompressible Flows. Scientific Computation. doi:10.1007/978-3-662-04416-2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem