- -

Hybrid organic-inorganic catalytic mesoporous materials with proton sponges as building blocks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybrid organic-inorganic catalytic mesoporous materials with proton sponges as building blocks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gianotti, Enrica es_ES
dc.contributor.author Díaz Morales, Urbano Manuel es_ES
dc.contributor.author Coluccia, Salvatore es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2016-06-20T10:13:03Z
dc.date.available 2016-06-20T10:13:03Z
dc.date.issued 2011
dc.identifier.issn 1463-9076
dc.identifier.uri http://hdl.handle.net/10251/66163
dc.description.abstract [EN] Non-ordered organic-inorganic mesoporous hybrid materials with basic sites have been synthesized following a fluoride-catalysed sol-gel process at neutral pH and low temperatures that avoids the use of structural directing agents (SDAs). Proton sponges have been used as the organic builder of the hybrids, while the inorganic part corresponds to silica tetrahedra. The proton sponges are diamines that exhibit very high basicity and, after functionalization, have been introduced as part of the walls of the mesoporous silica by one-pot synthesis. Several hybrids with different organic loadings have been synthesized and characterized by gas adsorption, thermogravimetric and elemental analysis, solid state MAS-NMR and FTIR spectroscopy. These hybrids show high activity as base catalysts and can be recycled. es_ES
dc.description.sponsorship The authors thank financial support by Consolider-Ingenio (MULTICAT project) from Spanish Government. EG thanks Marie Curie Fellowship (FP7-PEOPLE-2009-IEF) for financial support. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Hybrid organic-inorganic catalytic mesoporous materials with proton sponges as building blocks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c1cp20588a
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/252367/EU/Decomposition of Structured Tensors, Algorithms and Characterization./
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Gianotti, E.; Díaz Morales, UM.; Coluccia, S.; Corma Canós, A. (2011). Hybrid organic-inorganic catalytic mesoporous materials with proton sponges as building blocks. Physical Chemistry Chemical Physics. 13(24):11702-11709. https://doi.org/10.1039/c1cp20588a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c1cp20588a es_ES
dc.description.upvformatpinicio 11702 es_ES
dc.description.upvformatpfin 11709 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 24 es_ES
dc.relation.senia 209014 es_ES
dc.contributor.funder European Commission
dc.description.references Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075 es_ES
dc.description.references Sanchez, C., Rozes, L., Ribot, F., Laberty-Robert, C., Grosso, D., Sassoye, C., … Nicole, L. (2010). «Chimie douce»: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chimie, 13(1-2), 3-39. doi:10.1016/j.crci.2009.06.001 es_ES
dc.description.references Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k es_ES
dc.description.references Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m es_ES
dc.description.references Vallé, K., Belleville, P., Pereira, F., & Sanchez, C. (2006). Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer. Nature Materials, 5(2), 107-111. doi:10.1038/nmat1570 es_ES
dc.description.references Kapoor, M. P., & Inagaki, S. (2006). Highly Ordered Mesoporous Organosilica Hybrid Materials. Bulletin of the Chemical Society of Japan, 79(10), 1463-1475. doi:10.1246/bcsj.79.1463 es_ES
dc.description.references Damrau, U., & Marsmann, H. C. (1994). The hydrolysis of oligomer intermediates in the sol-gel process. Journal of Non-Crystalline Solids, 168(1-2), 42-48. doi:10.1016/0022-3093(94)90118-x es_ES
dc.description.references Raman, N. K., Ward, T. L., Brinker, C. J., Sehgal, R., Smith, D. M., Duan, Z., … Headley, T. J. (1993). Catalyst dispersion on supported ultramicroporous inorganic membranes using derivatized silylation agents. Applied Catalysis A: General, 96(1), 65-82. doi:10.1016/0926-860x(93)80007-d es_ES
dc.description.references Boury, B., & Corriu, R. J. P. (2002). Auto-organisation of hybrid organic–inorganic materials prepared by sol–gel chemistry. Chemical Communications, (8), 795-802. doi:10.1039/b109040m es_ES
dc.description.references Mehdi, A., Reye, C., & Corriu, R. (2011). From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chem. Soc. Rev., 40(2), 563-574. doi:10.1039/b920516k es_ES
dc.description.references Pope, E. J. A., & Mackenzie, J. D. (1986). Sol-gel processing of silica. Journal of Non-Crystalline Solids, 87(1-2), 185-198. doi:10.1016/s0022-3093(86)80078-3 es_ES
dc.description.references Winter, R., Chan, J.-B., Frattini, R., & Jonas, J. (1988). The effect of fluoride on the sol-gel process. Journal of Non-Crystalline Solids, 105(3), 214-222. doi:10.1016/0022-3093(88)90310-9 es_ES
dc.description.references Reale, E., Leyva, A., Corma, A., Martínez, C., García, H., & Rey, F. (2005). A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 15(17), 1742. doi:10.1039/b415066j es_ES
dc.description.references Díaz, U., García, T., Velty, A., & Corma, A. (2009). Hybrid organic–inorganic catalytic porous materials synthesized at neutral pH in absence of structural directing agents. Journal of Materials Chemistry, 19(33), 5970. doi:10.1039/b906821j es_ES
dc.description.references Alder, R. W. (1989). Strain effects on amine basicities. Chemical Reviews, 89(5), 1215-1223. doi:10.1021/cr00095a015 es_ES
dc.description.references Llamas-Saiz, A. L., Foces-Foces, C., & Elguero, J. (1994). Proton sponges. Journal of Molecular Structure, 328, 297-323. doi:10.1016/0022-2860(94)08367-3 es_ES
dc.description.references Howard, S. T. (2000). Relationship between Basicity, Strain, and Intramolecular Hydrogen-Bond Energy in Proton Sponges. Journal of the American Chemical Society, 122(34), 8238-8244. doi:10.1021/ja0010094 es_ES
dc.description.references Rodriguez, I., Sastre, G., Corma, A., & Iborra, S. (1999). Catalytic Activity of Proton Sponge: Application to Knoevenagel Condensation Reactions. Journal of Catalysis, 183(1), 14-23. doi:10.1006/jcat.1998.2380 es_ES
dc.description.references CLIMENT, M., CORMA, A., DOMINGUEZ, I., IBORRA, S., SABATER, M., & SASTRE, G. (2007). Gem-diamines as highly active organocatalysts for carbon–carbon bond formation. Journal of Catalysis, 246(1), 136-146. doi:10.1016/j.jcat.2006.11.029 es_ES
dc.description.references Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603 es_ES
dc.description.references Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 es_ES
dc.description.references Woźniak, K. (1996). Proton sponges: solid-state NMR spectra of ionic complexes of 1,8-bis(dimethylamino)naphthalene. Journal of Molecular Structure, 374(1-3), 317-326. doi:10.1016/0022-2860(95)08947-0 es_ES
dc.description.references Pozharskii, A. F. (1998). Naphthalene «proton sponges». Russian Chemical Reviews, 67(1), 1-24. doi:10.1070/rc1998v067n01abeh000377 es_ES
dc.description.references Seo, Y.-K., Park, S.-B., & Ho Park, D. (2006). Mesoporous hybrid organosilica containing urethane moieties. Journal of Solid State Chemistry, 179(4), 1285-1288. doi:10.1016/j.jssc.2006.01.021 es_ES
dc.description.references Kawahara, K., Hagiwara, Y., Shimojima, A., & Kuroda, K. (2008). Stepwise silylation of double-four-ring (D4R) silicate into a novel spherical siloxane with a defined architecture. Journal of Materials Chemistry, 18(27), 3193. doi:10.1039/b807533f es_ES
dc.description.references Van Meervelt, L., Platteborze, K., & Zeegers-Huyskens, T. (1994). X-Ray and Fourier-transform infrared studies of 1,8-bis(dimethylaminomethyl)naphthalene. Comparison with 1,8-bis(dimethylamino)naphthalene. Journal of the Chemical Society, Perkin Transactions 2, (5), 1087. doi:10.1039/p29940001087 es_ES
dc.description.references Brzeziński, B., Schroeder, G., Grech, E., Malarski, Z., & Sobczyk, L. (1992). Basicity, IR spectra and protonation of some proton sponges in acetonitrile. Journal of Molecular Structure, 274, 75-82. doi:10.1016/0022-2860(92)80147-a es_ES
dc.description.references Rodriguez, I., Iborra, S., Rey, F., & Corma, A. (2000). Heterogeneized Brönsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins. Applied Catalysis A: General, 194-195, 241-252. doi:10.1016/s0926-860x(99)00371-3 es_ES
dc.description.references CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027 es_ES
dc.description.references Prout, F. S., Beaucaire, V. D., Dyrkacz, G. R., Koppes, W. M., Kuznicki, R. E., Marlewski, T. A., … Puda, J. M. (1973). Konevenagel Reaction. Kinetic study of the reaction of (+)-3-methyl-cyclohexanone with malononitrile. The Journal of Organic Chemistry, 38(8), 1512-1517. doi:10.1021/jo00948a015 es_ES
dc.description.references Guyot, J., & Kergomard, A. (1983). Cinétique et mécanisme de la réaction de knoevenagel dans le benzène—1. Tetrahedron, 39(7), 1161-1166. doi:10.1016/s0040-4020(01)91879-4 es_ES
dc.description.references Motokura, K., Tanaka, S., Tada, M., & Iwasawa, Y. (2009). Bifunctional Heterogeneous Catalysis of Silica-Alumina-Supported Tertiary Amines with Controlled Acid-Base Interactions for Efficient 1,4-Addition Reactions. Chemistry - A European Journal, 15(41), 10871-10879. doi:10.1002/chem.200901380 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem