Mostrar el registro sencillo del ítem
dc.contributor.author | Bivià-Ausina, Carles | es_ES |
dc.date.accessioned | 2016-07-06T09:32:54Z | |
dc.date.available | 2016-07-06T09:32:54Z | |
dc.date.issued | 2015-04 | |
dc.identifier.issn | 0004-9727 | |
dc.identifier.uri | http://hdl.handle.net/10251/67201 | |
dc.description.abstract | We obtain a characterisation of the monomial ideals I subset of C[x(1), . . . , x(n)] of finite colength that satisfy the condition e(I) = L-0((1)) (I) . . . L-0((n)) (I), where L-0((1)) (I), . . . , L-0((n)) (I) is the sequence of mixed Lojasiewicz exponents of I and e(I) is the Samuel multiplicity of I. These are the monomial ideals whose integral closure admits a reduction generated by homogeneous polynomials. | es_ES |
dc.description.sponsorship | The author was partially supported by DGICYT Grant MTM2012-33073. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Cambridge University Press (CUP) + Australian Mathematical Publishing Association Inc. | es_ES |
dc.relation.ispartof | Bulletin of the Australian Mathematical Society | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Łojasiewicz exponents | es_ES |
dc.subject | Integral closure of ideals | es_ES |
dc.subject | Mixed multiplicities of ideals | es_ES |
dc.subject | Monomial ideals | es_ES |
dc.subject | Newton polyhedra | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Multiplicity and Lojasiewicz exponent of generic linear sections of monomial ideals | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1017/S0004972714001154 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2012-33073/ES/SINGULARIDADES, GEOMETRIA GENERICA Y MORFOLOGIA MATEMATICA./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bivià-Ausina, C. (2015). Multiplicity and Lojasiewicz exponent of generic linear sections of monomial ideals. Bulletin of the Australian Mathematical Society. 91(2):191-201. https://doi.org/10.1017/S0004972714001154 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1017/S0004972714001154 | es_ES |
dc.description.upvformatpinicio | 191 | es_ES |
dc.description.upvformatpfin | 201 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 91 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 303153 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Teissier, B. (2012). Some Resonances of Łojasiewicz Inequalities. Wiadomości Matematyczne, 48(2). doi:10.14708/wm.v48i2.337 | es_ES |
dc.description.references | Rojas, J. M., & Wang, X. (1996). Counting Affine Roots of Polynomial Systems via Pointed Newton Polytopes. Journal of Complexity, 12(2), 116-133. doi:10.1006/jcom.1996.0009 | es_ES |
dc.description.references | Rees, D. (1988). Lectures on the Asymptotic Theory of Ideals. doi:10.1017/cbo9780511525957 | es_ES |
dc.description.references | Rees, D. (1956). Valuations Associated with a Local Ring (II). Journal of the London Mathematical Society, s1-31(2), 228-235. doi:10.1112/jlms/s1-31.2.228 | es_ES |
dc.description.references | Howald, J. A. (2001). Transactions of the American Mathematical Society, 353(07), 2665-2672. doi:10.1090/s0002-9947-01-02720-9 | es_ES |
dc.description.references | Hickel, M. (2010). Fonction asymptotique de Samuel des sections hyperplanes et multiplicité. Journal of Pure and Applied Algebra, 214(5), 634-645. doi:10.1016/j.jpaa.2009.07.015 | es_ES |
dc.description.references | De Fernex, T., Ein, L., & Mustaţǎ, M. (2004). Multiplicities and log canonical threshold. Journal of Algebraic Geometry, 13(3), 603-615. doi:10.1090/s1056-3911-04-00346-7 | es_ES |
dc.description.references | Bivià-Ausina, C. (2008). Local Łojasiewicz exponents, Milnor numbers and mixed multiplicities of ideals. Mathematische Zeitschrift, 262(2), 389-409. doi:10.1007/s00209-008-0380-z | es_ES |
dc.description.references | Bivià-Ausina, C. (2008). Joint reductions of monomial ideals and multiplicity of complex analytic maps. Mathematical Research Letters, 15(2), 389-407. doi:10.4310/mrl.2008.v15.n2.a15 | es_ES |
dc.description.references | Rojas, J. M. (1994). A convex geometric approach to counting the roots of a polynomial system. Theoretical Computer Science, 133(1), 105-140. doi:10.1016/0304-3975(93)00062-a | es_ES |
dc.description.references | [6] C. Bivià-Ausina and T. Fukui , ‘Mixed Łojasiewicz exponents, log canonical thresholds of ideals and bi-Lipschitz equivalence’, Preprint, 2014, arXiv:1405.2110 [math.AG]. | es_ES |
dc.description.references | Ewald, G. (1996). Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics. doi:10.1007/978-1-4612-4044-0 | es_ES |
dc.description.references | Lejeune-Jalabert, M., & Teissier, B. (2008). Clôture intégrale des idéaux et équisingularité. Annales de la faculté des sciences de Toulouse Mathématiques, 17(4), 781-859. doi:10.5802/afst.1203 | es_ES |
dc.description.references | Bivià-Ausina, C., & Encinas, S. (2012). Łojasiewicz exponent of families of ideals, Rees mixed multiplicities and Newton filtrations. Revista Matemática Complutense, 26(2), 773-798. doi:10.1007/s13163-012-0104-0 | es_ES |
dc.description.references | Rees, D. (1984). Generalizations of Reductions and Mixed Multiplicities. Journal of the London Mathematical Society, s2-29(3), 397-414. doi:10.1112/jlms/s2-29.3.397 | es_ES |
dc.description.references | Biviá-Ausina, C. (2004). Nondegenerate Ideals in Formal Power Series Rings. Rocky Mountain Journal of Mathematics, 34(2), 495-511. doi:10.1216/rmjm/1181069864 | es_ES |
dc.description.references | Bivià-Ausina, C. (2005). JACOBIAN IDEALS AND THE NEWTON NON-DEGENERACY CONDITION. Proceedings of the Edinburgh Mathematical Society, 48(1), 21-36. doi:10.1017/s0013091504000173 | es_ES |
dc.description.references | Li, T. Y., & Wang, X. (1996). The BKK root count in $\mathbf{C}^n$. Mathematics of Computation, 65(216), 1477-1485. doi:10.1090/s0025-5718-96-00778-8 | es_ES |