- -

Graphenes as Efficient Metal-Free Fenton Catalysts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Graphenes as Efficient Metal-Free Fenton Catalysts

Mostrar el registro completo del ítem

Espinosa, JC.; Navalón Oltra, S.; Primo Arnau, AM.; Moral, M.; Fernandez Sanz, J.; Alvaro Rodríguez, MM.; García Gómez, H. (2015). Graphenes as Efficient Metal-Free Fenton Catalysts. Chemistry - A European Journal. 21(34):11966-11971. https://doi.org/10.1002/chem.201501533

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67328

Ficheros en el ítem

Metadatos del ítem

Título: Graphenes as Efficient Metal-Free Fenton Catalysts
Autor: Espinosa, Juan Carlos Navalón Oltra, Sergio Primo Arnau, Ana María Moral, Mónica Fernandez Sanz, Javier Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Reduced graphene oxide exhibits high activity as Fenton catalyst with HO. radical generation efficiency over 82 % and turnover nos. of 4540 and 15023 for phenol degrdn. and H2O2 consumption, resp. These values compare ...[+]
Palabras clave: Fenton reaction , carbon , Graphene , Fenton catalyst , Phenol decompn , Heterogeneous catalysis , radicals
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 ) (eissn: 1521-3765 )
DOI: 10.1002/chem.201501533
Editorial:
Wiley
Versión del editor: https://dx.doi.org/10.1002/chem.201501533
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//GV%2F2013%2F040/
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
Agradecimientos:
Financial support by Generalidad Valenciana (GV/2013/040 and Prometeo 2012/2013) is gratefully acknowledged. Spanish Ministry of Economy and Competitiveness is also thanked for funding (Severo Ochoa and CTQ2012-32315).
Tipo: Artículo

References

Stratakis, M., & Garcia, H. (2012). Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews, 112(8), 4469-4506. doi:10.1021/cr3000785

Jana, R., Pathak, T. P., & Sigman, M. S. (2011). Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-organometallics as Reaction Partners. Chemical Reviews, 111(3), 1417-1492. doi:10.1021/cr100327p

Punniyamurthy, T., Velusamy, S., & Iqbal, J. (2005). Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen. Chemical Reviews, 105(6), 2329-2364. doi:10.1021/cr050523v [+]
Stratakis, M., & Garcia, H. (2012). Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews, 112(8), 4469-4506. doi:10.1021/cr3000785

Jana, R., Pathak, T. P., & Sigman, M. S. (2011). Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-organometallics as Reaction Partners. Chemical Reviews, 111(3), 1417-1492. doi:10.1021/cr100327p

Punniyamurthy, T., Velusamy, S., & Iqbal, J. (2005). Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen. Chemical Reviews, 105(6), 2329-2364. doi:10.1021/cr050523v

Navalón, S., Álvaro, M., & García, H. (2013). Polymer- and Ionic Liquid-Containing Palladium: Recoverable Soluble Cross-Coupling Catalysts. ChemCatChem, 5(12), 3460-3480. doi:10.1002/cctc.201300339

Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035g

Su, C., & Loh, K. P. (2012). Carbocatalysts: Graphene Oxide and Its Derivatives. Accounts of Chemical Research, 46(10), 2275-2285. doi:10.1021/ar300118v

Su, D. S., Perathoner, S., & Centi, G. (2013). Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 113(8), 5782-5816. doi:10.1021/cr300367d

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347

Kong, X.-K., Chen, C.-L., & Chen, Q.-W. (2014). Doped graphene for metal-free catalysis. Chem. Soc. Rev., 43(8), 2841-2857. doi:10.1039/c3cs60401b

Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angewandte Chemie International Edition, 49(49), 9336-9344. doi:10.1002/anie.201003024

Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). Ein Konzept und seine Umsetzung: Graphen gestern, heute und morgen. Angewandte Chemie, 122(49), 9524-9532. doi:10.1002/ange.201003024

Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103g

Schaetz, A., Zeltner, M., & Stark, W. J. (2012). Carbon Modifications and Surfaces for Catalytic Organic Transformations. ACS Catalysis, 2(6), 1267-1284. doi:10.1021/cs300014k

Dreyer, D. R., Jia, H.-P., & Bielawski, C. W. (2010). Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions. Angewandte Chemie, 122(38), 6965-6968. doi:10.1002/ange.201002160

Primo, A., Navalón, S., Asiri, A. M., & García, H. (2014). Chitosan-Templated Synthesis of Few-Layers Boron Nitride and its Unforeseen Activity as a Fenton Catalyst. Chemistry - A European Journal, 21(1), 324-330. doi:10.1002/chem.201405469

Zhao, Y., Chen, W., Yuan, C., Zhu, Z., & Yan, L. (2012). Hydrogenated Graphene as Metal-free Catalyst for Fenton-like Reaction. Chinese Journal of Chemical Physics, 25(3), 335-338. doi:10.1088/1674-0068/25/03/335-338

Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. doi:10.1080/10643380500326564

Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1-3), 33-50. doi:10.1016/s0304-3894(02)00282-0

Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219-256. doi:10.1016/j.apcatb.2003.09.010

Navalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26. doi:10.1016/j.apcatb.2010.07.006

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Heterogeneous Fenton Catalysts Based on Activated Carbon and Related Materials. ChemSusChem, 4(12), 1712-1730. doi:10.1002/cssc.201100216

Dhakshinamoorthy, A., Navalon, S., Alvaro, M., & Garcia, H. (2012). Metal Nanoparticles as Heterogeneous Fenton Catalysts. ChemSusChem, 5(1), 46-64. doi:10.1002/cssc.201100517

Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653

Meng, L. Y., & Park, S. J. (2010). Synthesis of Graphene Nanosheets via Thermal Exfoliation of Pretreated Graphite at Low Temperature. Advanced Materials Research, 123-125, 787-790. doi:10.4028/www.scientific.net/amr.123-125.787

Zangmeister, C. D. (2010). Preparation and Evaluation of Graphite Oxide Reduced at 220 °C. Chemistry of Materials, 22(19), 5625-5629. doi:10.1021/cm102005m

Jin, M., Jeong, H.-K., Kim, T.-H., So, K. P., Cui, Y., Yu, W. J., … Lee, Y. H. (2010). Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature. Journal of Physics D: Applied Physics, 43(27), 275402. doi:10.1088/0022-3727/43/27/275402

Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g

Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068

Konios, D., Stylianakis, M. M., Stratakis, E., & Kymakis, E. (2014). Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 430, 108-112. doi:10.1016/j.jcis.2014.05.033

Dreyer, D. R., Todd, A. D., & Bielawski, C. W. (2014). Harnessing the chemistry of graphene oxide. Chemical Society Reviews, 43(15), 5288. doi:10.1039/c4cs00060a

Silva, C. M., Silva, P. L., & Pliego, J. R. (2013). Prediction of the pH-rate profile for dimethyl sulfide oxidation by hydrogen peroxide: The role of elusive H3O2+Ion. International Journal of Quantum Chemistry, 114(8), 501-507. doi:10.1002/qua.24594

Sun, J.-H., Sun, S.-P., Wang, G.-L., & Qiao, L.-P. (2007). Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74(3), 647-652. doi:10.1016/j.dyepig.2006.04.006

Bagri, A., Mattevi, C., Acik, M., Chabal, Y. J., Chhowalla, M., & Shenoy, V. B. (2010). Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry, 2(7), 581-587. doi:10.1038/nchem.686

Choudhary, S., Mungse, H. P., & Khatri, O. P. (2013). Hydrothermal Deoxygenation of Graphene Oxide: Chemical and Structural Evolution. Chemistry - An Asian Journal, 8(9), 2070-2078. doi:10.1002/asia.201300553

Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie International Edition, 49(45), 8403-8407. doi:10.1002/anie.201003216

Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie, 122(45), 8581-8585. doi:10.1002/ange.201003216

Martin, R., Navalon, S., Delgado, J. J., Calvino, J. J., Alvaro, M., & Garcia, H. (2011). Influence of the Preparation Procedure on the Catalytic Activity of Gold Supported on Diamond Nanoparticles for Phenol Peroxidation. Chemistry - A European Journal, 17(34), 9494-9502. doi:10.1002/chem.201100955

Wu, P., Du, P., Zhang, H., & Cai, C. (2013). Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction. Physical Chemistry Chemical Physics, 15(18), 6920. doi:10.1039/c3cp50900a

Burkitt, M. J., & Mason, R. P. (1991). Direct evidence for in vivo hydroxyl-radical generation in experimental iron overload: an ESR spin-trapping investigation. Proceedings of the National Academy of Sciences, 88(19), 8440-8444. doi:10.1073/pnas.88.19.8440

Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2011). Sunlight-Assisted Fenton Reaction Catalyzed by Gold Supported on Diamond Nanoparticles as Pretreatment for Biological Degradation of Aqueous Phenol Solutions. ChemSusChem, 4(5), 650-657. doi:10.1002/cssc.201000453

Navalon, S., Sempere, D., Alvaro, M., & Garcia, H. (2013). Influence of Hydrogen Annealing on the Photocatalytic Activity of Diamond-Supported Gold Catalysts. ACS Applied Materials & Interfaces, 5(15), 7160-7169. doi:10.1021/am401489n

Slobodian, P., Riha, P., Cavallo, P., Barbero, C. A., Benlikaya, R., Cvelbar, U., … Saha, P. (2014). Highly Enhanced Vapor Sensing of Multiwalled Carbon Nanotube Network Sensors byn-Butylamine Functionalization. Journal of Nanomaterials, 2014, 1-8. doi:10.1155/2014/589627

Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., … Du, Z. (2003). Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B, 107(16), 3712-3718. doi:10.1021/jp027500u

Mawhinney, D. B., Naumenko, V., Kuznetsova, A., Yates, J. T., Liu, J., & Smalley, R. E. (2000). Infrared Spectral Evidence for the Etching of Carbon Nanotubes:  Ozone Oxidation at 298 K. Journal of the American Chemical Society, 122(10), 2383-2384. doi:10.1021/ja994094s

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem