- -

Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a Boron dipyrromethene (BODIPY) dye

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a Boron dipyrromethene (BODIPY) dye

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barba Bon, Andrea es_ES
dc.contributor.author Costero, Ana M. es_ES
dc.contributor.author GIL GRAU, SALVADOR es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.date.accessioned 2016-07-11T07:56:14Z
dc.date.available 2016-07-11T07:56:14Z
dc.date.issued 2014
dc.identifier.issn 1477-0520
dc.identifier.uri http://hdl.handle.net/10251/67396
dc.description.abstract [EN] A novel colorimetric probe (P4) for the selective differential detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) was prepared. Probe P4 contains three reactive sites; i.e. (i) a nucleophilic phenol group able to undergo phosphorylation with nerve gases, (ii) a carbonyl group as a reactive site for cyanide; and (iii) a triisopropylsilyl (TIPS) protecting group that is known to react with fluoride. The reaction of P4 with DCNP in acetonitrile resulted in both the phosphorylation of the phenoxy group and the release of cyanide, which was able to react with the carbonyl group of P4 to produce a colour modulation from pink to orange. In contrast, phosphorylation of P4 with DFP in acetonitrile released fluoride that hydrolysed the TIPS group in P4 to yield a colour change from pink to blue. Probe P4 was able to discriminate between DFP and DCNP with remarkable sensitivity; limits of detection of 0.36 and 0.40 ppm for DCNP and DFP, respectively, were calculated. Besides, no interference from other organophosphorous derivatives or with presence of acid was observed. The sensing behaviour of P4 was also retained when incorporated into silica gel plates or onto polyethylene oxide membranes, which allowed the development of simple test strips for the colorimetric detection of DCNP and DFP in the vapour phase. P4 is the first probe capable of colorimetrically differentiating between a Tabun mimic (DCNP) and a Sarin and Soman mimic (DFP). es_ES
dc.description.sponsorship We thank the Spanish Government (MAT2012-38429-C04) for support. A.B.B. acknowledges the award of a pre-doctoral FPI fellowship. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation Ministerio FPI es_ES
dc.relation.ispartof Organic and Biomolecular Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject CHEMICAL WARFARE AGENTS es_ES
dc.subject FIELD-EFFECT TRANSISTORS es_ES
dc.subject NERVE AGENTS es_ES
dc.subject ORGANOPHOSPHATE PESTICIDES es_ES
dc.subject LANTHANIDE IONS es_ES
dc.subject RHODAMINE-B es_ES
dc.subject FLUORESCENT es_ES
dc.subject ACETYLCHOLINESTERASE es_ES
dc.subject SENSORS es_ES
dc.subject NANOPARTICLES es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a Boron dipyrromethene (BODIPY) dye es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c4ob01299b
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Barba Bon, A.; Costero, AM.; Gil Grau, S.; Martínez-Máñez, R.; Sancenón Galarza, F. (2014). Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a Boron dipyrromethene (BODIPY) dye. Organic and Biomolecular Chemistry. 12(43):8745-8751. https://doi.org/10.1039/c4ob01299b es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1039/c4ob01299b es_ES
dc.description.upvformatpinicio 8745 es_ES
dc.description.upvformatpfin 8751 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 43 es_ES
dc.relation.senia 278804 es_ES
dc.identifier.eissn 1477-0539
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references S. M. Somani , Chemical Warfare Agent , Academic Press , San Diego , 1992 es_ES
dc.description.references Gunderson, C. H., Lehmann, C. R., Sidell, F. R., & Jabbari, B. (1992). Nerve agents: A review. Neurology, 42(5), 946-946. doi:10.1212/wnl.42.5.946 es_ES
dc.description.references J. A. Vale , P.Rice and T. C.Marrs , Chemical Warfare Agents: Toxicology and Treatment , ed. T. C. Marrs , R. L. Maynard and F. R. Sidell , John Wiley & Sons , Chichester , 2007 es_ES
dc.description.references A. Silver , The Biology of Cholinesterases , Elsevier , New York , 1974 , pp. 449–488 es_ES
dc.description.references P. Taylor , in The Pharmacological Basis of Therapeutics , ed. J. G. Hardman , L. E. Limbird and A. G. Gilman , McGraw-Hill , New York , 10th edn, 2001 , pp. 175–191 es_ES
dc.description.references Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602 es_ES
dc.description.references Ashley, J. A., Lin, C.-H., Wirsching, P., & Janda, K. D. (1999). Monitoring Chemical Warfare Agents: A New Method for the Detection of Methylphosphonic Acid. Angewandte Chemie International Edition, 38(12), 1793-1795. doi:10.1002/(sici)1521-3773(19990614)38:12<1793::aid-anie1793>3.0.co;2-u es_ES
dc.description.references Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278f es_ES
dc.description.references Bünzli, J.-C. G., & Piguet, C. (2005). Taking advantage of luminescent lanthanide ions. Chemical Society Reviews, 34(12), 1048. doi:10.1039/b406082m es_ES
dc.description.references Zhao, B., Chen, X.-Y., Cheng, P., Liao, D.-Z., Yan, S.-P., & Jiang, Z.-H. (2004). Coordination Polymers Containing 1D Channels as Selective Luminescent Probes. Journal of the American Chemical Society, 126(47), 15394-15395. doi:10.1021/ja047141b es_ES
dc.description.references Khan, M. A. K., Long, Y.-T., Schatte, G., & Kraatz, H.-B. (2007). Surface Studies of Aminoferrocene Derivatives on Gold:  Electrochemical Sensors for Chemical Warfare Agents. Analytical Chemistry, 79(7), 2877-2884. doi:10.1021/ac061981m es_ES
dc.description.references Shulga, O. V., & Palmer, C. (2006). Detection of V-type nerve agent degradation products at electrodes modified by PPy/PQQ using CaCl2 as supporting electrolyte. Analytical and Bioanalytical Chemistry, 385(6), 1116-1123. doi:10.1007/s00216-006-0531-1 es_ES
dc.description.references Liu, G., & Lin, Y. (2006). Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow Injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents. Analytical Chemistry, 78(3), 835-843. doi:10.1021/ac051559q es_ES
dc.description.references Joshi, K. A., Prouza, M., Kum, M., Wang, J., Tang, J., Haddon, R., … Mulchandani, A. (2006). V-Type Nerve Agent Detection Using a Carbon Nanotube-Based Amperometric Enzyme Electrode. Analytical Chemistry, 78(1), 331-336. doi:10.1021/ac051052f es_ES
dc.description.references Liu, G., & Lin, Y. (2005). Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry, 77(18), 5894-5901. doi:10.1021/ac050791t es_ES
dc.description.references He, W., Liu, Z., Du, X., Jiang, Y., & Xiao, D. (2008). Analytical application of poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane} as a QCM coating for DMMP detection. Talanta, 76(3), 698-702. doi:10.1016/j.talanta.2008.04.022 es_ES
dc.description.references Walker, J. P., Kimble, K. W., & Asher, S. A. (2007). Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme. Analytical and Bioanalytical Chemistry, 389(7-8), 2115-2124. doi:10.1007/s00216-007-1599-y es_ES
dc.description.references Walker, J. P., & Asher, S. A. (2005). Acetylcholinesterase-Based Organophosphate Nerve Agent Sensing Photonic Crystal. Analytical Chemistry, 77(6), 1596-1600. doi:10.1021/ac048562e es_ES
dc.description.references Zuo, G., Li, X., Li, P., Yang, T., Wang, Y., Cheng, Z., & Feng, S. (2006). Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized SiO2 microcantilever piezoresistive sensor. Analytica Chimica Acta, 580(2), 123-127. doi:10.1016/j.aca.2006.07.071 es_ES
dc.description.references Karnati, C., Du, H., Ji, H.-F., Xu, X., Lvov, Y., Mulchandani, A., … Chen, W. (2007). Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosensors and Bioelectronics, 22(11), 2636-2642. doi:10.1016/j.bios.2006.10.027 es_ES
dc.description.references Aernecke, M. J., & Walt, D. R. (2009). Optical-fiber arrays for vapor sensing. Sensors and Actuators B: Chemical, 142(2), 464-469. doi:10.1016/j.snb.2009.06.054 es_ES
dc.description.references Wang, F., Gu, H., & Swager, T. M. (2008). Carbon Nanotube/Polythiophene Chemiresistive Sensors for Chemical Warfare Agents. Journal of the American Chemical Society, 130(16), 5392-5393. doi:10.1021/ja710795k es_ES
dc.description.references Clavaguera, S., Raoul, N., Carella, A., Delalande, M., Celle, C., & Simonato, J.-P. (2011). Development of an autonomous detector for sensing of nerve agents based on functionalized silicon nanowire field-effect transistors. Talanta, 85(5), 2542-2545. doi:10.1016/j.talanta.2011.08.012 es_ES
dc.description.references Clavaguera, S., Carella, A., Caillier, L., Celle, C., Pécaut, J., Lenfant, S., … Simonato, J.-P. (2010). Sub-ppm Detection of Nerve Agents Using Chemically Functionalized Silicon Nanoribbon Field-Effect Transistors. Angewandte Chemie International Edition, 49(24), 4063-4066. doi:10.1002/anie.201000122 es_ES
dc.description.references Kwon, O. S., Park, S. J., Lee, J. S., Park, E., Kim, T., Park, H.-W., … Jang, J. (2012). Multidimensional Conducting Polymer Nanotubes for Ultrasensitive Chemical Nerve Agent Sensing. Nano Letters, 12(6), 2797-2802. doi:10.1021/nl204587t es_ES
dc.description.references Wei, L., Shi, D., Ye, P., Dai, Z., Chen, H., Chen, C., … Zhang, Y. (2011). Hole doping and surface functionalization of single-walled carbon nanotube chemiresistive sensors for ultrasensitive and highly selective organophosphor vapor detection. Nanotechnology, 22(42), 425501. doi:10.1088/0957-4484/22/42/425501 es_ES
dc.description.references Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247a es_ES
dc.description.references Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b es_ES
dc.description.references Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie International Edition, 48(42), 7850-7852. doi:10.1002/anie.200902820 es_ES
dc.description.references Han, S., Xue, Z., Wang, Z., & Wen, T. B. (2010). Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine–hydroxamate. Chemical Communications, 46(44), 8413. doi:10.1039/c0cc02881a es_ES
dc.description.references Ordronneau, L., Carella, A., Pohanka, M., & Simonato, J.-P. (2013). Chromogenic detection of Sarin by discolouring decomplexation of a metal coordination complex. Chemical Communications, 49(79), 8946. doi:10.1039/c3cc45029e es_ES
dc.description.references Xuan, W., Cao, Y., Zhou, J., & Wang, W. (2013). A FRET-based ratiometric fluorescent and colorimetric probe for the facile detection of organophosphonate nerve agent mimic DCP. Chemical Communications, 49(89), 10474. doi:10.1039/c3cc46095a es_ES
dc.description.references Dennison, G. H., Sambrook, M. R., & Johnston, M. R. (2014). VX and VG chemical warfare agents bidentate complexation with lanthanide ions. Chem. Commun., 50(2), 195-197. doi:10.1039/c3cc46712k es_ES
dc.description.references Worek, F., Thiermann, H., Szinicz, L., & Eyer, P. (2004). Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochemical Pharmacology, 68(11), 2237-2248. doi:10.1016/j.bcp.2004.07.038 es_ES
dc.description.references Brandhuber, F., Zengerle, M., Porwol, L., Bierwisch, A., Koller, M., Reiter, G., … Kubik, S. (2013). Tabun scavengers based on hydroxamic acid containing cyclodextrins. Chemical Communications, 49(33), 3425. doi:10.1039/c3cc41290c es_ES
dc.description.references Royo, S., Costero, A. M., Parra, M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic, Specific Detection of the Nerve-Agent Mimic DCNP (a Tabun Mimic). Chemistry - A European Journal, 17(25), 6931-6934. doi:10.1002/chem.201100602 es_ES
dc.description.references Gotor, R., Costero, A. M., Gil, S., Parra, M., Martínez-Máñez, R., & Sancenón, F. (2011). A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chemistry - A European Journal, 17(43), 11994-11997. doi:10.1002/chem.201102241 es_ES
dc.description.references Candel, I., Bernardos, A., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Parra, M. (2011). Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes. Chemical Communications, 47(29), 8313. doi:10.1039/c1cc12727f es_ES
dc.description.references Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie International Edition, 49(34), 5945-5948. doi:10.1002/anie.201001088 es_ES
dc.description.references Barba-Bon, A., Costero, A. M., Gil, S., Harriman, A., & Sancenón, F. (2014). Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes. Chemistry - A European Journal, 20(21), 6339-6347. doi:10.1002/chem.201304475 es_ES
dc.description.references Ulrich, G., Ziessel, R., & Harriman, A. (2008). The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47(7), 1184-1201. doi:10.1002/anie.200702070 es_ES
dc.description.references Boens, N., Leen, V., & Dehaen, W. (2012). Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 41(3), 1130-1172. doi:10.1039/c1cs15132k es_ES
dc.description.references Madhu, S., Basu, S. K., Jadhav, S., & Ravikanth, M. (2013). 3,5-Diformyl-borondipyrromethene for selective detection of cyanide anion. The Analyst, 138(1), 299-306. doi:10.1039/c2an36407g es_ES
dc.description.references Bozdemir, O. A., Sozmen, F., Buyukcakir, O., Guliyev, R., Cakmak, Y., & Akkaya, E. U. (2010). Reaction-Based Sensing of Fluoride Ions Using Built-In Triggers for Intramolecular Charge Transfer and Photoinduced Electron Transfer. Organic Letters, 12(7), 1400-1403. doi:10.1021/ol100172w es_ES
dc.description.references Ulrich, G., & Ziessel, R. (2004). Functional dyes: bipyridines and bipyrimidine based boradiazaindacene. Tetrahedron Letters, 45(9), 1949-1953. doi:10.1016/j.tetlet.2003.12.122 es_ES
dc.description.references Ulrich, G., & Ziessel, R. (2004). Convenient and Efficient Synthesis of Functionalized Oligopyridine Ligands Bearing Accessory Pyrromethene-BF2Fluorophores. The Journal of Organic Chemistry, 69(6), 2070-2083. doi:10.1021/jo035825g es_ES
dc.description.references Haefele, A., Zedde, C., Retailleau, P., Ulrich, G., & Ziessel, R. (2010). Boron Asymmetry in a BODIPY Derivative. Organic Letters, 12(8), 1672-1675. doi:10.1021/ol100109j es_ES
dc.description.references Qin, W., Baruah, M., De Borggraeve, W. M., & Boens, N. (2006). Photophysical properties of an on/off fluorescent pH indicator excitable with visible light based on a borondipyrromethene-linked phenol. Journal of Photochemistry and Photobiology A: Chemistry, 183(1-2), 190-197. doi:10.1016/j.jphotochem.2006.03.015 es_ES
dc.description.references Peng, X., Du, J., Fan, J., Wang, J., Wu, Y., Zhao, J., … Xu, T. (2007). A Selective Fluorescent Sensor for Imaging Cd2+in Living Cells. Journal of the American Chemical Society, 129(6), 1500-1501. doi:10.1021/ja0643319 es_ES
dc.description.references Chen, Y., Wan, L., Zhang, D., Bian, Y., & Jiang, J. (2011). Modulation of the spectroscopic property of Bodipy derivates through tuning the molecular configuration. Photochemical & Photobiological Sciences, 10(6), 1030. doi:10.1039/c1pp00001b es_ES
dc.description.references Yin, Z., Tam, A. Y.-Y., Wong, K. M.-C., Tao, C.-H., Li, B., Poon, C.-T., … Yam, V. W.-W. (2012). Functionalized BODIPY with various sensory units – a versatile colorimetric and luminescent probe for pH and ions. Dalton Transactions, 41(37), 11340. doi:10.1039/c2dt30446e es_ES
dc.description.references Zhu, M., Yuan, M., Liu, X., Xu, J., Lv, J., Huang, C., … Zhu, D. (2008). Visible Near-Infrared Chemosensor for Mercury Ion. Organic Letters, 10(7), 1481-1484. doi:10.1021/ol800197t es_ES
dc.description.references Bencic-Nagale, S., Sternfeld, T., & Walt, D. R. (2006). Microbead Chemical Switches:  An Approach to Detection of Reactive Organophosphate Chemical Warfare Agent Vapors. Journal of the American Chemical Society, 128(15), 5041-5048. doi:10.1021/ja057057b es_ES
dc.description.references Casey, K. G., & Quitevis, E. L. (1988). Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols. The Journal of Physical Chemistry, 92(23), 6590-6594. doi:10.1021/j100334a023 es_ES
dc.description.references Karstens, T., & Kobs, K. (1980). Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements. The Journal of Physical Chemistry, 84(14), 1871-1872. doi:10.1021/j100451a030 es_ES
dc.description.references Didier, P., Ulrich, G., Mély, Y., & Ziessel, R. (2009). Improved push-pull-push E-Bodipy fluorophores for two-photon cell-imaging. Organic & Biomolecular Chemistry, 7(18), 3639. doi:10.1039/b911587k es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem