- -

Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Samper Madrigal, María Dolores es_ES
dc.contributor.author Petrucci, R. es_ES
dc.contributor.author Sánchez Nacher, Lourdes es_ES
dc.contributor.author Balart Gimeno, Rafael Antonio es_ES
dc.contributor.author Kenny, J. M. es_ES
dc.date.accessioned 2016-07-14T08:16:17Z
dc.date.available 2016-07-14T08:16:17Z
dc.date.issued 2015-07
dc.identifier.issn 0272-8397
dc.identifier.uri http://hdl.handle.net/10251/67593
dc.description.abstract The fiber-matrix interfacial shear strength (IFSS) of biobased epoxy composites reinforced with basalt fiber was investigated by the fragmentation method. Basalt fibers were modified with four different silanes, (3-aminopropyl)trimethoxysilane, [3-(2-aminoethylamino)propyl]-trimethoxysilane, trimethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane and (3-glycidyloxypropyl)trimethoxysilane to improve the adhesion between the basalt fiber and the resin. The analysis of the fiber tensile strength results was performed in terms of statistical parameters. The tensile strength of silane-treated basalt fiber is higher than the tensile strength of the untreated basalt fiber; this behavior may be due to flaw healing effect on the defected fiber surfaces. The IFSS results on the composites confirm that the interaction between the fiber modified with coupling agents and the bio-based epoxy resin was much stronger than that with the untreated basalt fiber. POLYM. COMPOS., 36:1205-1212, 2015. (c) 2014 Society of Plastics Engineers es_ES
dc.description.sponsorship Contract grant sponsor: Programme Support Research and Development (Polytechnic University of Valencia); contract grant number: PAID-00-12. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Polymer Composites es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mechanical-properties es_ES
dc.subject Polymer composites es_ES
dc.subject Tensile properties es_ES
dc.subject Epoxy resins es_ES
dc.subject Interface es_ES
dc.subject Strength es_ES
dc.subject Adhesion es_ES
dc.subject Damage es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pc.23023
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-00-12/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Samper Madrigal, MD.; Petrucci, R.; Sánchez Nacher, L.; Balart Gimeno, RA.; Kenny, JM. (2015). Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique. Polymer Composites. 36(7):1205-1212. https://doi.org/10.1002/pc.23023 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/pc.23023 es_ES
dc.description.upvformatpinicio 1205 es_ES
dc.description.upvformatpfin 1212 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 36 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 293582 es_ES
dc.identifier.eissn 1548-0569
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Lopattananon, N., Kettle, A. P., Tripathi, D., Beck, A. J., Duval, E., France, R. M., … Jones, F. R. (1999). Interface molecular engineering of carbon-fiber composites. Composites Part A: Applied Science and Manufacturing, 30(1), 49-57. doi:10.1016/s1359-835x(98)00109-2 es_ES
dc.description.references Nishikawa, M., Okabe, T., & Takeda, N. (2008). Determination of interface properties from experiments on the fragmentation process in single-fiber composites. Materials Science and Engineering: A, 480(1-2), 549-557. doi:10.1016/j.msea.2007.07.067 es_ES
dc.description.references Rao, V., Herrera-franco, P., Ozzello, A. D., & Drzal, L. T. (1991). A Direct Comparison of the Fragmentation Test and the Microbond Pull-out Test for Determining the Interfacial Shear Strength. The Journal of Adhesion, 34(1-4), 65-77. doi:10.1080/00218469108026506 es_ES
dc.description.references Doan, T.-T.-L., Brodowsky, H., & Mäder, E. (2012). Jute fibre/epoxy composites: Surface properties and interfacial adhesion. Composites Science and Technology, 72(10), 1160-1166. doi:10.1016/j.compscitech.2012.03.025 es_ES
dc.description.references Koyanagi, J., Nakatani, H., & Ogihara, S. (2012). Comparison of glass–epoxy interface strengths examined by cruciform specimen and single-fiber pull-out tests under combined stress state. Composites Part A: Applied Science and Manufacturing, 43(11), 1819-1827. doi:10.1016/j.compositesa.2012.06.018 es_ES
dc.description.references Johnson, A. C., Hayes, S. A., & Jones, F. R. (2012). The role of matrix cracks and fibre/matrix debonding on the stress transfer between fibre and matrix in a single fibre fragmentation test. Composites Part A: Applied Science and Manufacturing, 43(1), 65-72. doi:10.1016/j.compositesa.2011.09.005 es_ES
dc.description.references Pupurs, A., Goutianos, S., Brondsted, P., & Varna, J. (2013). Interface debond crack growth in tension–tension cyclic loading of single fiber polymer composites. Composites Part A: Applied Science and Manufacturing, 44, 86-94. doi:10.1016/j.compositesa.2012.08.019 es_ES
dc.description.references TRIPATHI, D., & JONES, F. R. (1998). Journal of Materials Science, 33(1), 1-16. doi:10.1023/a:1004351606897 es_ES
dc.description.references Awal, A., Cescutti, G., Ghosh, S. B., & Müssig, J. (2011). Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT). Composites Part A: Applied Science and Manufacturing, 42(1), 50-56. doi:10.1016/j.compositesa.2010.10.007 es_ES
dc.description.references Kelly, A., & Tyson, W. R. (1965). Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. Journal of the Mechanics and Physics of Solids, 13(6), 329-350. doi:10.1016/0022-5096(65)90035-9 es_ES
dc.description.references Altuna, F. I., Espósito, L. H., Ruseckaite, R. A., & Stefani, P. M. (2010). Thermal and mechanical properties of anhydride-cured epoxy resins with different contents of biobased epoxidized soybean oil. Journal of Applied Polymer Science, 120(2), 789-798. doi:10.1002/app.33097 es_ES
dc.description.references Harry-O’kuru, R. E., Mohamed, A., Gordon, S. H., & Xu, J. (2012). Syntheses of Novel Protein Products (Milkglyde, Saliglyde, and Soyglyde) from Vegetable Epoxy Oils and Gliadin. Journal of Agricultural and Food Chemistry, 60(7), 1688-1694. doi:10.1021/jf204701t es_ES
dc.description.references Pan, X., Sengupta, P., & Webster, D. C. (2011). High Biobased Content Epoxy–Anhydride Thermosets from Epoxidized Sucrose Esters of Fatty Acids. Biomacromolecules, 12(6), 2416-2428. doi:10.1021/bm200549c es_ES
dc.description.references Stemmelen, M., Pessel, F., Lapinte, V., Caillol, S., Habas, J.-P., & Robin, J.-J. (2011). A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. Journal of Polymer Science Part A: Polymer Chemistry, 49(11), 2434-2444. doi:10.1002/pola.24674 es_ES
dc.description.references Kim, H. (2012). Thermal characteristics of basalt fiber reinforced epoxy-benzoxazine composites. Fibers and Polymers, 13(6), 762-768. doi:10.1007/s12221-012-0762-z es_ES
dc.description.references Wang, H., Wang, G., Zhang, L., Jiang, Z., Guan, S., & Zhang, S. (2012). Influence of the addition of lubricant on the properties of poly(ether ether ketone)/basalt fiber composites. High Performance Polymers, 24(6), 503-506. doi:10.1177/0954008312443845 es_ES
dc.description.references Tehrani Dehkordi, M., Nosraty, H., Shokrieh, M. M., Minak, G., & Ghelli, D. (2013). The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites. Materials & Design, 43, 283-290. doi:10.1016/j.matdes.2012.07.005 es_ES
dc.description.references Guillebaud-Bonnafous, C., Vasconcellos, D., Touchard, F., & Chocinski-Arnault, L. (2012). Experimental and numerical investigation of the interface between epoxy matrix and hemp yarn. Composites Part A: Applied Science and Manufacturing, 43(11), 2046-2058. doi:10.1016/j.compositesa.2012.07.015 es_ES
dc.description.references Pickering, K. L., Sawpan, M. A., Jayaraman, J., & Fernyhough, A. (2011). Influence of loading rate, alkali fibre treatment and crystallinity on fracture toughness of random short hemp fibre reinforced polylactide bio-composites. Composites Part A: Applied Science and Manufacturing, 42(9), 1148-1156. doi:10.1016/j.compositesa.2011.04.020 es_ES
dc.description.references Charlet, K., Jernot, J.-P., Gomina, M., Bizet, L., & Bréard, J. (2010). Mechanical Properties of Flax Fibers and of the Derived Unidirectional Composites. Journal of Composite Materials, 44(24), 2887-2896. doi:10.1177/0021998310369579 es_ES
dc.description.references Barreto, A. C. H., Esmeraldo, M. A., Rosa, D. S., Fechine, P. B. A., & Mazzetto, S. E. (2010). Cardanol biocomposites reinforced with jute fiber: Microstructure, biodegradability, and mechanical properties. Polymer Composites, 31(11), 1928-1937. doi:10.1002/pc.20990 es_ES
dc.description.references Bledzki, A. K., & Jaszkiewicz, A. (2010). Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres – A comparative study to PP. Composites Science and Technology, 70(12), 1687-1696. doi:10.1016/j.compscitech.2010.06.005 es_ES
dc.description.references Terenzi, A., Kenny, J. M., & Barbosa, S. E. (2006). Natural fiber suspensions in thermoplastic polymers. I. Analysis of fiber damage during processing. Journal of Applied Polymer Science, 103(4), 2501-2506. doi:10.1002/app.24704 es_ES
dc.description.references Herrera-Franco, P. J., & Drzal, L. T. (1992). Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites, 23(1), 2-27. doi:10.1016/0010-4361(92)90282-y es_ES
dc.description.references Park, J.-M., Shin, W.-G., & Yoon, D.-J. (1999). A study of interfacial aspects of epoxy-based composites reinforced with dual basalt and SiC fibres by means of the fragmentation and acoustic emission techniques. Composites Science and Technology, 59(3), 355-370. doi:10.1016/s0266-3538(98)00085-2 es_ES
dc.description.references España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421 es_ES
dc.description.references Holmes, G. A., Feresenbet, E., & Raghavan, D. (2003). Using self-assembled monolayer technology to probe the mechanical response of the fiber interphase-matrix interphase interface. Composite Interfaces, 10(6), 515-546. doi:10.1163/156855403322667250 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem