- -

In silico assessment of drug safety in human heart applied to late sodium current blockers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In silico assessment of drug safety in human heart applied to late sodium current blockers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trénor Gomis, Beatriz Ana es_ES
dc.contributor.author Gomis-Tena Dolz, Julio es_ES
dc.contributor.author Cardona Urrego, Karen Eliana es_ES
dc.contributor.author Romero Pérez, Lucia es_ES
dc.contributor.author Rajamani, Sridharan es_ES
dc.contributor.author Belardinelli, Luiz es_ES
dc.contributor.author Giles, Wayne R. es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.date.accessioned 2016-07-15T14:04:21Z
dc.date.available 2016-07-15T14:04:21Z
dc.date.issued 2013-07-01
dc.identifier.issn 1933-6950
dc.identifier.uri http://hdl.handle.net/10251/67665
dc.description.abstract Drug-induced action potential (AP) prolongation leading to Torsade de Pointes is a major concern for the development of anti-arrhythmic drugs. Nevertheless the development of improved anti-arrhythmic agents, some of which may block different channels, remains an important opportunity. Partial block of the late sodium current (INaL) has emerged as a novel anti-arrhythmic mechanism. It can be effective in the settings of free radical challenge or hypoxia. In addition, this approach can attenuate pro-arrhythmic effects of blocking the rapid delayed rectifying K+ current (IKr). The main goal of our computational work was to develop an in-silico tool for preclinical anti-arrhythmic drug safety assessment, by illustrating the impact of IKr/INaL ratio of steady-state block of drug candidates on “torsadogenic” biomarkers. The O’Hara et al. AP model for human ventricular myocytes was used. Biomarkers for arrhythmic risk, i.e., AP duration, triangulation, reverse rate-dependence, transmural dispersion of repolarization and electrocardiogram QT intervals, were calculated using single myocyte and one-dimensional strand simulations. Predetermined amounts of block of INaL and IKr were evaluated. “Safety plots” were developed to illustrate the value of the specific biomarker for selected combinations of IC50s for IKr and INaL of potential drugs. The reference biomarkers at baseline changed depending on the “drug” specificity for these two ion channel targets. Ranolazine and GS967 (a novel potent inhibitor of INaL) yielded a biomarker data set that is considered safe by standard regulatory criteria. This novel in-silico approach is useful for evaluating pro-arrhythmic potential of drugs and drug candidates in the human ventricle. es_ES
dc.description.sponsorship This work was supported by (1) Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica, (2) Plan Avanza en el marco de la Accion Estrategica de Telecomunicaciones y Sociedad de la Informacion del Ministerio de Industria Turismo y Comercio of Spain (TSI-020100-2010-469), (3) Programa de Apoyo a la Investigacion y Desarrollo (PAID-06-11-2002) de la Universidad Politecnica de Valencia, (4) Programa Prometeo (PROMETEO/2012/030) de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana and (5) Gilead Sciences, Ltd. en_EN
dc.language Inglés es_ES
dc.publisher Landes Bioscience es_ES
dc.relation.ispartof Channels es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Anti-arrhythmic es_ES
dc.subject Drug safety es_ES
dc.subject Multi-channel block es_ES
dc.subject Reverse rate-dependence es_ES
dc.subject Late sodium current es_ES
dc.subject Transmural dispersion of repolarization es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title In silico assessment of drug safety in human heart applied to late sodium current blockers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4161/chan.24905
dc.relation.projectID info:eu-repo/grantAgreement/MITURCO//TSI-020100-2010-0469/ES/LocMoTIC. Localización del Origen de Arritmias Cardíacas Mediante Modelado y Tecnologías de la Información y Comunicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11-2002/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F030/ES/MEJORA EN LA PREVENCION Y TRATAMIENTO DE PATOLOGIAS CARDIACAS A TRAVES DE LA MODELIZACION MULTI-ESCALA Y LA SIMULACION COMPUTACIONAL (DIGITAL HEART)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Trénor Gomis, BA.; Gomis-Tena Dolz, J.; Cardona Urrego, KE.; Romero Pérez, L.; Rajamani, S.; Belardinelli, L.; Giles, WR.... (2013). In silico assessment of drug safety in human heart applied to late sodium current blockers. Channels. 7(4):1-14. https://doi.org/10.4161/chan.24905 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.4161/chan.24905 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 259537 es_ES
dc.identifier.eissn 1933-6969
dc.identifier.pmid 23696033 en_EN
dc.identifier.pmcid PMC3989354 en_EN
dc.contributor.funder Gilead Sciences es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Industria, Turismo y Comercio es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Maltsev, V. A., Silverman, N., Sabbah, H. N., & Undrovinas, A. I. (2007). Chronic heart failure slows late sodium current in human and canine ventricular myocytes: Implications for repolarization variability. European Journal of Heart Failure, 9(3), 219-227. doi:10.1016/j.ejheart.2006.08.007 es_ES
dc.description.references Zaza, A., Belardinelli, L., & Shryock, J. C. (2008). Pathophysiology and pharmacology of the cardiac «late sodium current». Pharmacology & Therapeutics, 119(3), 326-339. doi:10.1016/j.pharmthera.2008.06.001 es_ES
dc.description.references Song, Y., Shryock, J. C., Wagner, S., Maier, L. S., & Belardinelli, L. (2006). Blocking Late Sodium Current Reduces Hydrogen Peroxide-Induced Arrhythmogenic Activity and Contractile Dysfunction. Journal of Pharmacology and Experimental Therapeutics, 318(1), 214-222. doi:10.1124/jpet.106.101832 es_ES
dc.description.references Milberg, P., Pott, C., Fink, M., Frommeyer, G., Matsuda, T., Baba, A., … Eckardt, L. (2008). Inhibition of the Na+/Ca2+ exchanger suppresses torsades de pointes in an intact heart model of long QT syndrome-2 and long QT syndrome-3. Heart Rhythm, 5(10), 1444-1452. doi:10.1016/j.hrthm.2008.06.017 es_ES
dc.description.references Jia, S., Lian, J., Guo, D., Xue, X., Patel, C., Yang, L., … Yan, G.-X. (2011). Modulation of the late sodium current by ATX-II and ranolazine affects the reverse use-dependence and proarrhythmic liability of IKrblockade. British Journal of Pharmacology, 164(2), 308-316. doi:10.1111/j.1476-5381.2010.01181.x es_ES
dc.description.references UNDROVINAS, A. I., BELARDINELLI, L., UNDROVINAS, N. A., & SABBAH, H. N. (2006). Ranolazine Improves Abnormal Repolarization and Contraction in Left Ventricular Myocytes of Dogs with Heart Failure by Inhibiting Late Sodium Current. Journal of Cardiovascular Electrophysiology, 17(s1), S169-S177. doi:10.1111/j.1540-8167.2006.00401.x es_ES
dc.description.references Wu, L., Shryock, J. C., Song, Y., Li, Y., Antzelevitch, C., & Belardinelli, L. (2004). Antiarrhythmic Effects of Ranolazine in a Guinea Pig in Vitro Model of Long-QT Syndrome. Journal of Pharmacology and Experimental Therapeutics, 310(2), 599-605. doi:10.1124/jpet.104.066100 es_ES
dc.description.references MOSS, A. J., ZAREBA, W., SCHWARZ, K. Q., ROSERO, S., MCNITT, S., & ROBINSON, J. L. (2008). Ranolazine Shortens Repolarization in Patients with Sustained Inward Sodium Current Due to Type-3 Long-QT Syndrome. Journal of Cardiovascular Electrophysiology, 19(12), 1289-1293. doi:10.1111/j.1540-8167.2008.01246.x es_ES
dc.description.references Song, Y., Shryock, J. C., Wu, L., & Belardinelli, L. (2004). Antagonism by Ranolazine of the Pro-Arrhythmic Effects of Increasing Late INa in Guinea Pig Ventricular Myocytes. Journal of Cardiovascular Pharmacology, 44(2), 192-199. doi:10.1097/00005344-200408000-00008 es_ES
dc.description.references Belardinelli, L., Liu, G., Smith-Maxwell, C., Wang, W.-Q., El-Bizri, N., Hirakawa, R., … Shryock, J. C. (2012). A Novel, Potent, and Selective Inhibitor of Cardiac Late Sodium Current Suppresses Experimental Arrhythmias. Journal of Pharmacology and Experimental Therapeutics, 344(1), 23-32. doi:10.1124/jpet.112.198887 es_ES
dc.description.references Banyasz, T., Koncz, R., Fulop, L., Szentandrassy, N., Magyar, J., & Nanasi, P. (2004). Profile of IKs During the Action Potential Questions the Therapeutic Value of IKs Blockade. Current Medicinal Chemistry, 11(1), 45-60. doi:10.2174/0929867043456304 es_ES
dc.description.references Hopenfeld, B. (2006). A mathematical analysis of the action potential plateau duration of a human ventricular myocyte. Journal of Theoretical Biology, 240(2), 311-322. doi:10.1016/j.jtbi.2005.09.021 es_ES
dc.description.references Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). Electrotonic Coupling between Human Atrial Myocytes and Fibroblasts Alters Myocyte Excitability and Repolarization. Biophysical Journal, 97(8), 2179-2190. doi:10.1016/j.bpj.2009.07.054 es_ES
dc.description.references Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., & Giles, W. R. (1998). Mathematical Model of an Adult Human Atrial Cell. Circulation Research, 82(1), 63-81. doi:10.1161/01.res.82.1.63 es_ES
dc.description.references Viswanathan, P. (1999). Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovascular Research, 42(2), 530-542. doi:10.1016/s0008-6363(99)00035-8 es_ES
dc.description.references Wu, R., & Patwardhan, A. (2007). Effects of rapid and slow potassium repolarization currents and calcium dynamics on hysteresis in restitution of action potential duration. Journal of Electrocardiology, 40(2), 188-199. doi:10.1016/j.jelectrocard.2006.01.001 es_ES
dc.description.references Zaniboni, M. (2011). 3D current–voltage–time surfaces unveil critical repolarization differences underlying similar cardiac action potentials: A model study. Mathematical Biosciences, 233(2), 98-110. doi:10.1016/j.mbs.2011.06.008 es_ES
dc.description.references Zaniboni, M. (2012). Late Phase of Repolarization is Autoregenerative and Scales Linearly with Action Potential Duration in Mammals Ventricular Myocytes: A Model Study. IEEE Transactions on Biomedical Engineering, 59(1), 226-233. doi:10.1109/tbme.2011.2170987 es_ES
dc.description.references Zaniboni, M., Riva, I., Cacciani, F., & Groppi, M. (2010). How different two almost identical action potentials can be: A model study on cardiac repolarization. Mathematical Biosciences, 228(1), 56-70. doi:10.1016/j.mbs.2010.08.007 es_ES
dc.description.references Belardinelli, L., Antzelevitch, C., & Vos, M. A. (2003). Assessing predictors of drug-induced torsade de pointes. Trends in Pharmacological Sciences, 24(12), 619-625. doi:10.1016/j.tips.2003.10.002 es_ES
dc.description.references Shah, R. R., & Hondeghem, L. M. (2005). Refining detection of drug-induced proarrhythmia: QT interval and TRIaD. Heart Rhythm, 2(7), 758-772. doi:10.1016/j.hrthm.2005.03.023 es_ES
dc.description.references Hondeghem, L. M., Carlsson, L., & Duker, G. (2001). Instability and Triangulation of the Action Potential Predict Serious Proarrhythmia, but Action Potential Duration Prolongation Is Antiarrhythmic. Circulation, 103(15), 2004-2013. doi:10.1161/01.cir.103.15.2004 es_ES
dc.description.references Mirams, G. R., Cui, Y., Sher, A., Fink, M., Cooper, J., Heath, B. M., … Noble, D. (2011). Simulation of multiple ion channel block provides improved early prediction of compounds’ clinical torsadogenic risk. Cardiovascular Research, 91(1), 53-61. doi:10.1093/cvr/cvr044 es_ES
dc.description.references Obiol-Pardo, C., Gomis-Tena, J., Sanz, F., Saiz, J., & Pastor, M. (2011). A Multiscale Simulation System for the Prediction of Drug-Induced Cardiotoxicity. Journal of Chemical Information and Modeling, 51(2), 483-492. doi:10.1021/ci100423z es_ES
dc.description.references Suzuki, S., Murakami, S., Tsujimae, K., Findlay, I., & Kurachi, Y. (2008). In silico risk assessment for drug-induction of cardiac arrhythmia. Progress in Biophysics and Molecular Biology, 98(1), 52-60. doi:10.1016/j.pbiomolbio.2008.05.003 es_ES
dc.description.references Mirams, G. R., Davies, M. R., Cui, Y., Kohl, P., & Noble, D. (2012). Application of cardiac electrophysiology simulations to pro-arrhythmic safety testing. British Journal of Pharmacology, 167(5), 932-945. doi:10.1111/j.1476-5381.2012.02020.x es_ES
dc.description.references Sarkar, A. X., & Sobie, E. A. (2011). Quantification of repolarization reserve to understand interpatient variability in the response to proarrhythmic drugs: A computational analysis. Heart Rhythm, 8(11), 1749-1755. doi:10.1016/j.hrthm.2011.05.023 es_ES
dc.description.references CHANG, C., ACHARFI, S., WU, M., CHIANG, F., WANG, J., SUNG, T., & CHAHINE, M. (2004). A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. Cardiovascular Research, 64(2), 268-278. doi:10.1016/j.cardiores.2004.07.007 es_ES
dc.description.references Weirich, J., & Antoni, H. (1998). Rate-dependence of antiarrhythmic and proarrhythmic properties of class I and class III antiarrhythmic drugs. Basic Research in Cardiology, 93(0), s125-s132. doi:10.1007/s003950050236 es_ES
dc.description.references O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061 es_ES
dc.description.references Wu, L., Ma, J., Li, H., Wang, C., Grandi, E., Zhang, P., … Belardinelli, L. (2011). Late Sodium Current Contributes to the Reverse Rate-Dependent Effect of I Kr Inhibition on Ventricular Repolarization. Circulation, 123(16), 1713-1720. doi:10.1161/circulationaha.110.000661 es_ES
dc.description.references Banyasz, T., Barandi, L., Harmati, G., Virag, L., Szentandrassy, N., Marton, I., … P. Nanasi, P. (2011). Mechanism of Reverse Rate-Dependent Action of Cardioactive Agents. Current Medicinal Chemistry, 18(24), 3597-3606. doi:10.2174/092986711796642355 es_ES
dc.description.references Noble D, Tsien RW. The repolarization process of heart cells. In: DeMello WC, ed. Electrical Phenomena in the Heart. New York: Academic Press, 1972:133-161. es_ES
dc.description.references Fink, M., Noble, D., Virag, L., Varro, A., & Giles, W. R. (2008). Contributions of HERG K+ current to repolarization of the human ventricular action potential. Progress in Biophysics and Molecular Biology, 96(1-3), 357-376. doi:10.1016/j.pbiomolbio.2007.07.011 es_ES
dc.description.references Goineau, S., Castagné, V., Guillaume, P., & Froget, G. (2012). The comparative sensitivity of three in vitro safety pharmacology models for the detection of lidocaine-induced cardiac effects. Journal of Pharmacological and Toxicological Methods, 66(1), 52-58. doi:10.1016/j.vascn.2012.06.001 es_ES
dc.description.references Wu, L., Guo, D., Li, H., Hackett, J., Yan, G.-X., Jiao, Z., … Belardinelli, L. (2008). Role of late sodium current in modulating the proarrhythmic and antiarrhythmic effects of quinidine. Heart Rhythm, 5(12), 1726-1734. doi:10.1016/j.hrthm.2008.09.008 es_ES
dc.description.references Diness, J. G., Hansen, R. S., Nissen, J. D., Jespersen, T., & Grunnet, M. (2009). Antiarrhythmic effect of IKr activation in a cellular model of LQT3. Heart Rhythm, 6(1), 100-106. doi:10.1016/j.hrthm.2008.10.020 es_ES
dc.description.references Laursen, M., Olesen, S.-P., Grunnet, M., Mow, T., & Jespersen, T. (2011). Characterization of cardiac repolarization in the Göttingen minipig. Journal of Pharmacological and Toxicological Methods, 63(2), 186-195. doi:10.1016/j.vascn.2010.10.001 es_ES
dc.description.references HONDEGHEM, L. M. (2006). Thorough QT/QTc Not So Thorough: Removes Torsadogenic Predictors from the T-Wave, Incriminates Safe Drugs, and Misses Profibrillatory Drugs. Journal of Cardiovascular Electrophysiology, 17(3), 337-340. doi:10.1111/j.1540-8167.2006.00347.x es_ES
dc.description.references Hondeghem, L. M., & Snyders, D. J. (1990). Class III antiarrhythmic agents have a lot of potential but a long way to go. Reduced effectiveness and dangers of reverse use dependence. Circulation, 81(2), 686-690. doi:10.1161/01.cir.81.2.686 es_ES
dc.description.references Bril, A. (1998). Combined potassium and calcium channel antagonistic activities as a basis for neutral frequency dependent increase in action potential duration: comparison between BRL-32872 and azimilide. Cardiovascular Research, 37(1), 130-140. doi:10.1016/s0008-6363(97)00216-2 es_ES
dc.description.references Jurkiewicz, N. K., & Sanguinetti, M. C. (1993). Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Specific block of rapidly activating delayed rectifier K+ current by dofetilide. Circulation Research, 72(1), 75-83. doi:10.1161/01.res.72.1.75 es_ES
dc.description.references O’Hara, T., & Rudy, Y. (2012). Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species. American Journal of Physiology-Heart and Circulatory Physiology, 302(5), H1023-H1030. doi:10.1152/ajpheart.00785.2011 es_ES
dc.description.references Stengl, M., Volders, P. G. A., Thomsen, M. B., Spatjens, R. L. H. M. G., Sipido, K. R., & Vos, M. A. (2003). Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes. The Journal of Physiology, 551(3), 777-786. doi:10.1113/jphysiol.2003.044040 es_ES
dc.description.references Shah, R. R. (2002). The significance of QT interval in drug development. British Journal of Clinical Pharmacology, 54(2), 188-202. doi:10.1046/j.1365-2125.2002.01627.x es_ES
dc.description.references Nuyens, D., Stengl, M., Dugarmaa, S., Rossenbacker, T., Compernolle, V., Rudy, Y., … Carmeliet, P. (2001). Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nature Medicine, 7(9), 1021-1027. doi:10.1038/nm0901-1021 es_ES
dc.description.references Gautier, M., Zhang, H., & Fearon, I. M. (2008). Peroxynitrite formation mediates LPC-induced augmentation of cardiac late sodium currents. Journal of Molecular and Cellular Cardiology, 44(2), 241-251. doi:10.1016/j.yjmcc.2007.09.007 es_ES
dc.description.references Fearon, I. M., & Brown, S. T. (2004). Acute and chronic hypoxic regulation of recombinant hNav1.5 α subunits. Biochemical and Biophysical Research Communications, 324(4), 1289-1295. doi:10.1016/j.bbrc.2004.09.188 es_ES
dc.description.references Ward, C. A., & Giles, W. R. (1997). Ionic mechanism of the effects of hydrogen peroxide in rat ventricular myocytes. The Journal of Physiology, 500(3), 631-642. doi:10.1113/jphysiol.1997.sp022048 es_ES
dc.description.references Saint, D. A. (2009). The cardiac persistent sodium current: an appealing therapeutic target? British Journal of Pharmacology, 153(6), 1133-1142. doi:10.1038/sj.bjp.0707492 es_ES
dc.description.references Zygmunt, A. C., Eddlestone, G. T., Thomas, G. P., Nesterenko, V. V., & Antzelevitch, C. (2001). Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. American Journal of Physiology-Heart and Circulatory Physiology, 281(2), H689-H697. doi:10.1152/ajpheart.2001.281.2.h689 es_ES
dc.description.references Trenor, B., Cardona, K., Gomez, J. F., Rajamani, S., Ferrero, J. M., Belardinelli, L., & Saiz, J. (2012). Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure. PLoS ONE, 7(3), e32659. doi:10.1371/journal.pone.0032659 es_ES
dc.description.references Martin, R. L., McDermott, J. S., Salmen, H. J., Palmatier, J., Cox, B. F., & Gintant, G. A. (2004). The Utility of hERG and Repolarization Assays in Evaluating Delayed Cardiac Repolarization: Influence of Multi-Channel Block. Journal of Cardiovascular Pharmacology, 43(3), 369-379. doi:10.1097/00005344-200403000-00007 es_ES
dc.description.references Antzelevitch, C., Belardinelli, L., Zygmunt, A. C., Burashnikov, A., Di Diego, J. M., Fish, J. M., … Thomas, G. (2004). Electrophysiological Effects of Ranolazine, a Novel Antianginal Agent With Antiarrhythmic Properties. Circulation, 110(8), 904-910. doi:10.1161/01.cir.0000139333.83620.5d es_ES
dc.description.references Noble, D. (2006). Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload. Heart, 92(suppl_4), iv1-iv5. doi:10.1136/hrt.2005.078782 es_ES
dc.description.references Scirica, B. M., Morrow, D. A., Hod, H., Murphy, S. A., Belardinelli, L., Hedgepeth, C. M., … Braunwald, E. (2007). Effect of Ranolazine, an Antianginal Agent With Novel Electrophysiological Properties, on the Incidence of Arrhythmias in Patients With Non–ST-Segment–Elevation Acute Coronary Syndrome. Circulation, 116(15), 1647-1652. doi:10.1161/circulationaha.107.724880 es_ES
dc.description.references Hoefen, R., Reumann, M., Goldenberg, I., Moss, A. J., O-Uchi, J., Gu, Y., … Lopes, C. M. (2012). In Silico Cardiac Risk Assessment in Patients With Long QT Syndrome. Journal of the American College of Cardiology, 60(21), 2182-2191. doi:10.1016/j.jacc.2012.07.053 es_ES
dc.description.references Silva, J. R., Pan, H., Wu, D., Nekouzadeh, A., Decker, K. F., Cui, J., … Rudy, Y. (2009). A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential. Proceedings of the National Academy of Sciences, 106(27), 11102-11106. doi:10.1073/pnas.0904505106 es_ES
dc.description.references STARMER, C. (1991). Lidocaine blockade of continuously and transiently accessible sites in cardiac sodium channels*1. Journal of Molecular and Cellular Cardiology, 23, 73-83. doi:10.1016/0022-2828(91)90026-i es_ES
dc.description.references Rudy, Y., & Silva, J. R. (2006). Computational biology in the study of cardiac ion channels and cell electrophysiology. Quarterly Reviews of Biophysics, 39(1), 57-116. doi:10.1017/s0033583506004227 es_ES
dc.description.references Clancy, C. E., Zhu, Z. I., & Rudy, Y. (2007). Pharmacogenetics and anti-arrhythmic drug therapy: a theoretical investigation. American Journal of Physiology-Heart and Circulatory Physiology, 292(1), H66-H75. doi:10.1152/ajpheart.00312.2006 es_ES
dc.description.references Zygmunt, A. C., Nesterenko, V. V., Rajamani, S., Hu, D., Barajas-Martinez, H., Belardinelli, L., & Antzelevitch, C. (2011). Mechanisms of atrial-selective block of Na+ channels by ranolazine: I. Experimental analysis of the use-dependent block. American Journal of Physiology-Heart and Circulatory Physiology, 301(4), H1606-H1614. doi:10.1152/ajpheart.00242.2011 es_ES
dc.description.references Nesterenko, V. V., Zygmunt, A. C., Rajamani, S., Belardinelli, L., & Antzelevitch, C. (2011). Mechanisms of atrial-selective block of Na+ channels by ranolazine: II. Insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 301(4), H1615-H1624. doi:10.1152/ajpheart.00243.2011 es_ES
dc.description.references Zemzemi, N., Bernabeu, M. O., Saiz, J., Cooper, J., Pathmanathan, P., Mirams, G. R., … Rodriguez, B. (2013). Computational assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface potentials. British Journal of Pharmacology, 168(3), 718-733. doi:10.1111/j.1476-5381.2012.02200.x es_ES
dc.description.references Hille B. Ionic Channels of Excitable Membranes. 2nd ed. Sunderland, MA: Sinauer Associates, 1992. es_ES
dc.description.references Rajamani, S., Shryock, J. C., & Belardinelli, L. (2008). Rapid Kinetic Interactions of Ranolazine With HERG K+ Current. Journal of Cardiovascular Pharmacology, 51(6), 581-589. doi:10.1097/fjc.0b013e3181799690 es_ES
dc.description.references Rajamani, S., El-Bizri, N., Shryock, J. C., Makielski, J. C., & Belardinelli, L. (2009). Use-dependent block of cardiac late Na+ current by ranolazine. Heart Rhythm, 6(11), 1625-1631. doi:10.1016/j.hrthm.2009.07.042 es_ES
dc.description.references Bassingthwaighte, J., Hunter, P., & Noble, D. (2009). The Cardiac Physiome: perspectives for the future. Experimental Physiology, 94(5), 597-605. doi:10.1113/expphysiol.2008.044099 es_ES
dc.description.references Quinn, T. A., Granite, S., Allessie, M. A., Antzelevitch, C., Bollensdorff, C., Bub, G., … Delmar, M. (2011). Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised reporting for model reproducibility, interoperability, and data sharing. Progress in Biophysics and Molecular Biology, 107(1), 4-10. doi:10.1016/j.pbiomolbio.2011.07.001 es_ES
dc.description.references Glukhov, A. V., Fedorov, V. V., Lou, Q., Ravikumar, V. K., Kalish, P. W., Schuessler, R. B., … Efimov, I. R. (2010). Transmural Dispersion of Repolarization in Failing and Nonfailing Human Ventricle. Circulation Research, 106(5), 981-991. doi:10.1161/circresaha.109.204891 es_ES
dc.description.references MALTSEV, V., & UNDROVINAS, A. (2006). A multi-modal composition of the late Na+ current in human ventricular cardiomyocytes. Cardiovascular Research, 69(1), 116-127. doi:10.1016/j.cardiores.2005.08.015 es_ES
dc.description.references Drouin, E., Charpentier, F., Gauthier, C., Laurent, K., & Le Marec, H. (1995). Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: Evidence for presence of M cells. Journal of the American College of Cardiology, 26(1), 185-192. doi:10.1016/0735-1097(95)00167-x es_ES
dc.description.references Berecki, G., Zegers, J. G., Bhuiyan, Z. A., Verkerk, A. O., Wilders, R., & Van Ginneken, A. C. G. (2006). Long-QT syndrome-related sodium channel mutations probed by the dynamic action potential clamp technique. The Journal of Physiology, 570(2), 237-250. doi:10.1113/jphysiol.2005.096578 es_ES
dc.description.references Valdivia, C. R., Chu, W. W., Pu, J., Foell, J. D., Haworth, R. A., Wolff, M. R., … Makielski, J. C. (2005). Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. Journal of Molecular and Cellular Cardiology, 38(3), 475-483. doi:10.1016/j.yjmcc.2004.12.012 es_ES
dc.description.references Belardinelli, L. (2006). Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart, 92(suppl_4), iv6-iv14. doi:10.1136/hrt.2005.078790 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem