- -

New family of iterative methods based on the Ermakov-Kalitkin scheme for solving nonlinear systems of equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New family of iterative methods based on the Ermakov-Kalitkin scheme for solving nonlinear systems of equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Budzko, D.A. es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2016-07-19T07:03:53Z
dc.date.available 2016-07-19T07:03:53Z
dc.date.issued 2015-12
dc.identifier.issn 0965-5425
dc.identifier.uri http://hdl.handle.net/10251/67779
dc.description.abstract A new one-parameter family of iterative methods for solving nonlinear equations and systems is constructed. It is proved that their order of convergence is three for both equations and systems. An analysis of the dynamical behavior of the methods shows that they have a larger domain of convergence than previously known iterative schemes of the second to fourth orders. Numerical results suggest that the methods are also preferable in terms of their relative stability and the number of iteration steps. The methods are compared with previously known techniques as applied to a system of two nonlinear equations describing the dynamics of a passively gravitating mass in the Newtonian circular restricted four-body problem formulated on the basis of Lagrange's triangular solutions to the threebody problem. es_ES
dc.description.sponsorship This work was supported by the European Commission and the Ministry of Science and Technologies of Spain, project no. MTM2011-28636-C02-02. en_EN
dc.language Inglés es_ES
dc.publisher Springer. MAIK Nauka/Interperiodica es_ES
dc.relation.ispartof Computational Mathematics and Mathematical Physics / Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Two-step iterative scheme for nonlinear equations es_ES
dc.subject Ermakov-Kalitkin scheme es_ES
dc.subject Convergence of the scheme es_ES
dc.subject Stability es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title New family of iterative methods based on the Ermakov-Kalitkin scheme for solving nonlinear systems of equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1134/S0965542515120040
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Budzko, D.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2015). New family of iterative methods based on the Ermakov-Kalitkin scheme for solving nonlinear systems of equations. Computational Mathematics and Mathematical Physics / Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki. 55(12):1947-1959. https://doi.org/10.1134/S0965542515120040 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1134/S0965542515120040 es_ES
dc.description.upvformatpinicio 1947 es_ES
dc.description.upvformatpfin 1959 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 296765 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Commission es_ES
dc.description.references M. Petkovic, B. Neta, L. Petkovic, and J. Dunic, Multipoint Methods for Solving Nonlinear Equations (Academic, New York, 2012). es_ES
dc.description.references A. Cordero, T. Lotfi, K. Mahdiani, and J. R. Torregrosa, “Two optimal general classes of iterative methods with eighth-order,” Acta Appl. Math. 134 (1), 61–74 (2014). es_ES
dc.description.references S. Artidiello, A. Cordero, J. R. Torregrosa, and M. P. Vassileva, “Optimal high-order methods for solving nonlinear equations,” J. Appl. Math. 2014, special issue, Article ID 591638, (2014); http://dx.doi.org/10.1155/2014/591638. es_ES
dc.description.references V. V. Popuzin, M. A. Sumbatyan, and R. A. Tanyushin, “Fast iteration method in the problem of waves interacting with a set of thin screens,” Comput. Math. Math. Phys. 53 (8), 1195–1206 (2013). es_ES
dc.description.references V. V. Ermakov and N. N. Kalitkin, “The optimal step and regularization for Newton’s method,” USSR Comput. Math. Math. Phys. 21 (2), 235–242 (1981). es_ES
dc.description.references T. Zhanlav and I. V. Puzynin, “The convergence of iterations based on a continuous analogue of Newton’s method,” Comput. Math. Math. Phys. 32 (6), 729–737 (1992). es_ES
dc.description.references V. M. Madorskii, Quasi-Newton Processes for Solving Nonlinear Equations (Brest. Gos. Univ., Brest, 2005) [in Russian]. es_ES
dc.description.references J. F. Traub, Iterative Methods for the Solution of Equations (Englewood Cliffs, Prentice-Hall, 1964). es_ES
dc.description.references P. Jarratt, “Some fourth order multipoint iterative methods for solving equations,” Math. Comput. 20 (95), 434–437 (1966). es_ES
dc.description.references D. A. Budzko and A. N. Prokopenya, “On the stability of equilibrium positions in the circular restricted fourbody problem,” Lect. Notes Comput. Sci. 6885, 88–100 (2011). es_ES
dc.description.references D. A. Budzko and A. N. Prokopenya, “Stability of equilibrium positions in the spatial circular restricted fourbody problem,” Lect. Notes Comput. Sci. 7442, 72–83 (2012). es_ES
dc.description.references P.Blanchard “The Mandelbrot set, the Farey tree, and the Fibonacci sequence,” Am. Math. Mon.106, (4), pp. 289–302 (1999). es_ES
dc.description.references R. L. Devaney, “The Mandelbrot set, the Farey tree, and the Fibonacci sequence,” Am. Math. Mon. 106 (4), 289–302 (1999). es_ES
dc.description.references F. I. Chicharro, A. Cordero, and J. R. Torregrosa, “Drawing dynamical and parameters planes of iterative families and methods,” Sci. World J., Article ID 780153 (2013). es_ES
dc.description.references A. Cordero and J. R. Torregrosa, “Variants of Newton’s method using fifth-order quadrature formulas,” Appl. Math. Comput. 190, 686–698 (2007). es_ES
dc.description.references J. M. Ortega and W. G. Rheinboldt, Iterative Solutions of Nonlinear Equations in Several Variables (Academic, New York, 1970). es_ES
dc.description.references C. Hermite, “Sur la formule d’interpolation de Lagrange,” J. Reine Angew. Math. 84, 70–79 (1878). es_ES
dc.description.references D. A. Budzko and A. N. Prokopenya, “Symbolic-numerical analysis of equilibrium solutions in a restricted four-body problem,” Program. Comput. Software 36 (2), 68–74 (2010). es_ES
dc.description.references D. A. Budzko and A. N. Prokopenya, “Symbolic-numerical methods for searching for equilibrium states in a restricted four-body problem,” Program. Comput. Software 39 (2), 74–80 (2013). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem