Mostrar el registro sencillo del ítem
dc.contributor.author | Rodrigo Tarrega, Guillermo | es_ES |
dc.contributor.author | Elena Fito, Santiago Fco | es_ES |
dc.date.accessioned | 2016-07-22T09:13:18Z | |
dc.date.available | 2016-07-22T09:13:18Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1759-6653 | |
dc.identifier.uri | http://hdl.handle.net/10251/68012 | |
dc.description.abstract | Robustness is considered a ubiquitous property of living systems at all levels of organization, and small noncoding RNA (sncRNA) is a genuine model for its study at the molecular level. In this communication, we question whether microRNA precursors (pre-miRNAs) are actually structurally robust, as previously suggested. We found that natural pre-miRNAs are not more robust than expected under an appropriate null model. On the contrary, we found that eukaryotic pre-miRNAs show a significant enrichment in conformational flexibility at the thermal equilibrium of the molecule, that is, in their plasticity. Our results further support the selection for functional diversification and evolvability in sncRNAs. | es_ES |
dc.description.sponsorship | The authors thank R. B. R. Azevedo for useful comments. This work was supported by an EMBO long-term fellowship co-funded by Marie Curie actions (ALTF-1177-2011) to G. R. and by grant BFU2012-30805 from the Spanish Secretaria de Estado de Investigacion, Desarrollo e Innovacion, to S.F.E. | en_EN |
dc.language | Español | es_ES |
dc.publisher | Oxford University Press (OUP) | es_ES |
dc.relation.ispartof | Genome Biology and Evolution | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Conformational flexibility | es_ES |
dc.subject | Evolvability | es_ES |
dc.subject | Noncoding RNA | es_ES |
dc.subject | Secondary structure | es_ES |
dc.subject | Thermodynamics | es_ES |
dc.title | MicroRNA precursors are not structurally robust but plastic | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/gbe/evs132 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/Marie Skłodowska-Curie Actions/ALTF-1177-2011/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Rodrigo Tarrega, G.; Elena Fito, SF. (2013). MicroRNA precursors are not structurally robust but plastic. Genome Biology and Evolution. 5(1):181-186. https://doi.org/10.1093/gbe/evs132 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1093/gbe/evs132 | es_ES |
dc.description.upvformatpinicio | 181 | es_ES |
dc.description.upvformatpfin | 186 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 233407 | es_ES |
dc.identifier.pmid | 23275486 | en_EN |
dc.identifier.pmcid | PMC3595027 | en_EN |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | European Molecular Biology Organization | es_ES |
dc.description.references | Ancel, L. W., & Fontana, W. (2000). Plasticity, evolvability, and modularity in RNA. Journal of Experimental Zoology, 288(3), 242-283. doi:10.1002/1097-010x(20001015)288:3<242::aid-jez5>3.0.co;2-o | es_ES |
dc.description.references | Borenstein, E., & Ruppin, E. (2006). Direct evolution of genetic robustness in microRNA. Proceedings of the National Academy of Sciences, 103(17), 6593-6598. doi:10.1073/pnas.0510600103 | es_ES |
dc.description.references | CLOTE, P. (2005). Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA, 11(5), 578-591. doi:10.1261/rna.7220505 | es_ES |
dc.description.references | Draghi, J. A., Parsons, T. L., Wagner, G. P., & Plotkin, J. B. (2010). Mutational robustness can facilitate adaptation. Nature, 463(7279), 353-355. doi:10.1038/nature08694 | es_ES |
dc.description.references | Eddy, S. R. (2001). Non–coding RNA genes and the modern RNA world. Nature Reviews Genetics, 2(12), 919-929. doi:10.1038/35103511 | es_ES |
dc.description.references | Fang, X.-W., Golden, B. L., Littrell, K., Shelton, V., Thiyagarajan, P., Pan, T., & Sosnick, T. R. (2001). The thermodynamic origin of the stability of a thermophilic ribozyme. Proceedings of the National Academy of Sciences, 98(8), 4355-4360. doi:10.1073/pnas.071050698 | es_ES |
dc.description.references | Gruber, A. R., Bernhart, S. H., Hofacker, I. L., & Washietl, S. (2008). Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics, 9(1), 122. doi:10.1186/1471-2105-9-122 | es_ES |
dc.description.references | Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., & Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte f�r Chemie Chemical Monthly, 125(2), 167-188. doi:10.1007/bf00818163 | es_ES |
dc.description.references | Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11), 826-837. doi:10.1038/nrg1471 | es_ES |
dc.description.references | Kozomara, A., & Griffiths-Jones, S. (2010). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research, 39(Database), D152-D157. doi:10.1093/nar/gkq1027 | es_ES |
dc.description.references | Layton, D. M. (2005). A statistical analysis of RNA folding algorithms through thermodynamic parameter perturbation. Nucleic Acids Research, 33(2), 519-524. doi:10.1093/nar/gkh983 | es_ES |
dc.description.references | Lee, Y. (2002). MicroRNA maturation: stepwise processing and subcellular localization. The EMBO Journal, 21(17), 4663-4670. doi:10.1093/emboj/cdf476 | es_ES |
dc.description.references | Lynch, M., & Conery, J. S. (2003). The Origins of Genome Complexity. Science, 302(5649), 1401-1404. doi:10.1126/science.1089370 | es_ES |
dc.description.references | McCaskill, J. S. (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29(6-7), 1105-1119. doi:10.1002/bip.360290621 | es_ES |
dc.description.references | Neilsen, C. T., Goodall, G. J., & Bracken, C. P. (2012). IsomiRs – the overlooked repertoire in the dynamic microRNAome. Trends in Genetics, 28(11), 544-549. doi:10.1016/j.tig.2012.07.005 | es_ES |
dc.description.references | Nozawa, M., Miura, S., & Nei, M. (2010). Origins and Evolution of MicroRNA Genes in Drosophila Species. Genome Biology and Evolution, 2, 180-189. doi:10.1093/gbe/evq009 | es_ES |
dc.description.references | Orr, H. A. (2005). The genetic theory of adaptation: a brief history. Nature Reviews Genetics, 6(2), 119-127. doi:10.1038/nrg1523 | es_ES |
dc.description.references | Parisien, M., Cruz, J. A., Westhof, E., & Major, F. (2009). New metrics for comparing and assessing discrepancies between RNA 3D structures and models. RNA, 15(10), 1875-1885. doi:10.1261/rna.1700409 | es_ES |
dc.description.references | Price, N., Cartwright, R. A., Sabath, N., Graur, D., & Azevedo, R. B. R. (2011). Neutral Evolution of Robustness in Drosophila microRNA Precursors. Molecular Biology and Evolution, 28(7), 2115-2123. doi:10.1093/molbev/msr029 | es_ES |
dc.description.references | Rodrigo, G., & Fares, M. A. (2012). Describing the structural robustness landscape of bacterial small RNAs. BMC Evolutionary Biology, 12(1), 52. doi:10.1186/1471-2148-12-52 | es_ES |
dc.description.references | Sanjuán, R., Cuevas, J. M., Furió, V., Holmes, E. C., & Moya, A. (2007). Selection for Robustness in Mutagenized RNA Viruses. PLoS Genetics, 3(6), e93. doi:10.1371/journal.pgen.0030093 | es_ES |
dc.description.references | Shu, W., Bo, X., Ni, M., Zheng, Z., & Wang, S. (2007). In silico genetic robustness analysis of microRNA secondary structures: potential evidence of congruent evolution in microRNA. BMC Evolutionary Biology, 7(1), 223. doi:10.1186/1471-2148-7-223 | es_ES |
dc.description.references | Starega-Roslan, J., Krol, J., Koscianska, E., Kozlowski, P., Szlachcic, W. J., Sobczak, K., & Krzyzosiak, W. J. (2010). Structural basis of microRNA length variety. Nucleic Acids Research, 39(1), 257-268. doi:10.1093/nar/gkq727 | es_ES |
dc.description.references | Szollosi, G. J., & Derenyi, I. (2009). Congruent Evolution of Genetic and Environmental Robustness in Micro-RNA. Molecular Biology and Evolution, 26(4), 867-874. doi:10.1093/molbev/msp008 | es_ES |
dc.description.references | Tokuriki, N., & Tawfik, D. S. (2009). Protein Dynamism and Evolvability. Science, 324(5924), 203-207. doi:10.1126/science.1169375 | es_ES |
dc.description.references | Wagner, A. (2012). The role of robustness in phenotypic adaptation and innovation. Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1249-1258. doi:10.1098/rspb.2011.2293 | es_ES |
dc.description.references | Wagner, A., & Stadler, P. F. (1999). Viral RNA and evolved mutational robustness. Journal of Experimental Zoology, 285(2), 119-127. doi:10.1002/(sici)1097-010x(19990815)285:2<119::aid-jez4>3.0.co;2-d | es_ES |
dc.description.references | Wuchty, S., Fontana, W., Hofacker, I. L., & Schuster, P. (1999). Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers, 49(2), 145-165. doi:10.1002/(sici)1097-0282(199902)49:2<145::aid-bip4>3.0.co;2-g | es_ES |