- -

MicroRNA precursors are not structurally robust but plastic

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

MicroRNA precursors are not structurally robust but plastic

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodrigo Tarrega, Guillermo es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.date.accessioned 2016-07-22T09:13:18Z
dc.date.available 2016-07-22T09:13:18Z
dc.date.issued 2013
dc.identifier.issn 1759-6653
dc.identifier.uri http://hdl.handle.net/10251/68012
dc.description.abstract Robustness is considered a ubiquitous property of living systems at all levels of organization, and small noncoding RNA (sncRNA) is a genuine model for its study at the molecular level. In this communication, we question whether microRNA precursors (pre-miRNAs) are actually structurally robust, as previously suggested. We found that natural pre-miRNAs are not more robust than expected under an appropriate null model. On the contrary, we found that eukaryotic pre-miRNAs show a significant enrichment in conformational flexibility at the thermal equilibrium of the molecule, that is, in their plasticity. Our results further support the selection for functional diversification and evolvability in sncRNAs. es_ES
dc.description.sponsorship The authors thank R. B. R. Azevedo for useful comments. This work was supported by an EMBO long-term fellowship co-funded by Marie Curie actions (ALTF-1177-2011) to G. R. and by grant BFU2012-30805 from the Spanish Secretaria de Estado de Investigacion, Desarrollo e Innovacion, to S.F.E. en_EN
dc.language Español es_ES
dc.publisher Oxford University Press (OUP) es_ES
dc.relation.ispartof Genome Biology and Evolution es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Conformational flexibility es_ES
dc.subject Evolvability es_ES
dc.subject Noncoding RNA es_ES
dc.subject Secondary structure es_ES
dc.subject Thermodynamics es_ES
dc.title MicroRNA precursors are not structurally robust but plastic es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/gbe/evs132
dc.relation.projectID info:eu-repo/grantAgreement/EC/Marie Skłodowska-Curie Actions/ALTF-1177-2011/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Rodrigo Tarrega, G.; Elena Fito, SF. (2013). MicroRNA precursors are not structurally robust but plastic. Genome Biology and Evolution. 5(1):181-186. https://doi.org/10.1093/gbe/evs132 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1093/gbe/evs132 es_ES
dc.description.upvformatpinicio 181 es_ES
dc.description.upvformatpfin 186 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 233407 es_ES
dc.identifier.pmid 23275486 en_EN
dc.identifier.pmcid PMC3595027 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder European Molecular Biology Organization es_ES
dc.description.references Ancel, L. W., & Fontana, W. (2000). Plasticity, evolvability, and modularity in RNA. Journal of Experimental Zoology, 288(3), 242-283. doi:10.1002/1097-010x(20001015)288:3<242::aid-jez5>3.0.co;2-o es_ES
dc.description.references Borenstein, E., & Ruppin, E. (2006). Direct evolution of genetic robustness in microRNA. Proceedings of the National Academy of Sciences, 103(17), 6593-6598. doi:10.1073/pnas.0510600103 es_ES
dc.description.references CLOTE, P. (2005). Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA, 11(5), 578-591. doi:10.1261/rna.7220505 es_ES
dc.description.references Draghi, J. A., Parsons, T. L., Wagner, G. P., & Plotkin, J. B. (2010). Mutational robustness can facilitate adaptation. Nature, 463(7279), 353-355. doi:10.1038/nature08694 es_ES
dc.description.references Eddy, S. R. (2001). Non–coding RNA genes and the modern RNA world. Nature Reviews Genetics, 2(12), 919-929. doi:10.1038/35103511 es_ES
dc.description.references Fang, X.-W., Golden, B. L., Littrell, K., Shelton, V., Thiyagarajan, P., Pan, T., & Sosnick, T. R. (2001). The thermodynamic origin of the stability of a thermophilic ribozyme. Proceedings of the National Academy of Sciences, 98(8), 4355-4360. doi:10.1073/pnas.071050698 es_ES
dc.description.references Gruber, A. R., Bernhart, S. H., Hofacker, I. L., & Washietl, S. (2008). Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics, 9(1), 122. doi:10.1186/1471-2105-9-122 es_ES
dc.description.references Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., & Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte f�r Chemie Chemical Monthly, 125(2), 167-188. doi:10.1007/bf00818163 es_ES
dc.description.references Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11), 826-837. doi:10.1038/nrg1471 es_ES
dc.description.references Kozomara, A., & Griffiths-Jones, S. (2010). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research, 39(Database), D152-D157. doi:10.1093/nar/gkq1027 es_ES
dc.description.references Layton, D. M. (2005). A statistical analysis of RNA folding algorithms through thermodynamic parameter perturbation. Nucleic Acids Research, 33(2), 519-524. doi:10.1093/nar/gkh983 es_ES
dc.description.references Lee, Y. (2002). MicroRNA maturation: stepwise processing and subcellular localization. The EMBO Journal, 21(17), 4663-4670. doi:10.1093/emboj/cdf476 es_ES
dc.description.references Lynch, M., & Conery, J. S. (2003). The Origins of Genome Complexity. Science, 302(5649), 1401-1404. doi:10.1126/science.1089370 es_ES
dc.description.references McCaskill, J. S. (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29(6-7), 1105-1119. doi:10.1002/bip.360290621 es_ES
dc.description.references Neilsen, C. T., Goodall, G. J., & Bracken, C. P. (2012). IsomiRs – the overlooked repertoire in the dynamic microRNAome. Trends in Genetics, 28(11), 544-549. doi:10.1016/j.tig.2012.07.005 es_ES
dc.description.references Nozawa, M., Miura, S., & Nei, M. (2010). Origins and Evolution of MicroRNA Genes in Drosophila Species. Genome Biology and Evolution, 2, 180-189. doi:10.1093/gbe/evq009 es_ES
dc.description.references Orr, H. A. (2005). The genetic theory of adaptation: a brief history. Nature Reviews Genetics, 6(2), 119-127. doi:10.1038/nrg1523 es_ES
dc.description.references Parisien, M., Cruz, J. A., Westhof, E., & Major, F. (2009). New metrics for comparing and assessing discrepancies between RNA 3D structures and models. RNA, 15(10), 1875-1885. doi:10.1261/rna.1700409 es_ES
dc.description.references Price, N., Cartwright, R. A., Sabath, N., Graur, D., & Azevedo, R. B. R. (2011). Neutral Evolution of Robustness in Drosophila microRNA Precursors. Molecular Biology and Evolution, 28(7), 2115-2123. doi:10.1093/molbev/msr029 es_ES
dc.description.references Rodrigo, G., & Fares, M. A. (2012). Describing the structural robustness landscape of bacterial small RNAs. BMC Evolutionary Biology, 12(1), 52. doi:10.1186/1471-2148-12-52 es_ES
dc.description.references Sanjuán, R., Cuevas, J. M., Furió, V., Holmes, E. C., & Moya, A. (2007). Selection for Robustness in Mutagenized RNA Viruses. PLoS Genetics, 3(6), e93. doi:10.1371/journal.pgen.0030093 es_ES
dc.description.references Shu, W., Bo, X., Ni, M., Zheng, Z., & Wang, S. (2007). In silico genetic robustness analysis of microRNA secondary structures: potential evidence of congruent evolution in microRNA. BMC Evolutionary Biology, 7(1), 223. doi:10.1186/1471-2148-7-223 es_ES
dc.description.references Starega-Roslan, J., Krol, J., Koscianska, E., Kozlowski, P., Szlachcic, W. J., Sobczak, K., & Krzyzosiak, W. J. (2010). Structural basis of microRNA length variety. Nucleic Acids Research, 39(1), 257-268. doi:10.1093/nar/gkq727 es_ES
dc.description.references Szollosi, G. J., & Derenyi, I. (2009). Congruent Evolution of Genetic and Environmental Robustness in Micro-RNA. Molecular Biology and Evolution, 26(4), 867-874. doi:10.1093/molbev/msp008 es_ES
dc.description.references Tokuriki, N., & Tawfik, D. S. (2009). Protein Dynamism and Evolvability. Science, 324(5924), 203-207. doi:10.1126/science.1169375 es_ES
dc.description.references Wagner, A. (2012). The role of robustness in phenotypic adaptation and innovation. Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1249-1258. doi:10.1098/rspb.2011.2293 es_ES
dc.description.references Wagner, A., & Stadler, P. F. (1999). Viral RNA and evolved mutational robustness. Journal of Experimental Zoology, 285(2), 119-127. doi:10.1002/(sici)1097-010x(19990815)285:2<119::aid-jez4>3.0.co;2-d es_ES
dc.description.references Wuchty, S., Fontana, W., Hofacker, I. L., & Schuster, P. (1999). Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers, 49(2), 145-165. doi:10.1002/(sici)1097-0282(199902)49:2<145::aid-bip4>3.0.co;2-g es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem