Mostrar el registro sencillo del ítem
dc.contributor.author | Luisi, P | es_ES |
dc.contributor.author | Alvarez-Ponce, D | es_ES |
dc.contributor.author | Pybus, M | es_ES |
dc.contributor.author | Fares Riaño, Mario Ali | es_ES |
dc.contributor.author | Bertranpetit, J | es_ES |
dc.contributor.author | Laayouni, H | es_ES |
dc.date.accessioned | 2016-07-22T09:19:32Z | |
dc.date.available | 2016-07-22T09:19:32Z | |
dc.date.issued | 2015-04 | |
dc.identifier.issn | 1759-6653 | |
dc.identifier.uri | http://hdl.handle.net/10251/68014 | |
dc.description.abstract | Genes vary in their likelihood to undergo adaptive evolution. The genomic factors that determine adaptability, however, remain poorly understood. Genes function in the context of molecular networks, with some occupying more important positions than others and thus being likely to be under stronger selective pressures. However, how positive selection distributes across the different parts of molecular networks is still not fully understood. Here, we inferred positive selection using comparative genomics and population genetics approaches through the comparison of 10 mammalian and 270 human genomes, respectively. In agreement with previous results, we found that genes with lower network centralities are more likely to evolve under positive selection (as inferred from divergence data). Surprisingly, polymorphism data yield results in the opposite direction than divergence data: Genes with higher centralities are more likely to have been targeted by recent positive selection during recent human evolution. Our results indicate that the relationship between centrality and the impact of adaptive evolution highly depends on the mode of positive selection and/or the evolutionary time-scale. | es_ES |
dc.description.sponsorship | The authors thankfully acknowledge valuable discussion and corrections from Diego A. Hartasanchez, David A. Hughes, Jessica Nye, and Arcadi Navarro. They thank Gabriel Santpere for his help to compute the McDonald-Krietman test. They also thank the National Institute of Bioinformatics (http://www.inab.org) and Javier Forment, from the Bioinformatics service at the "Instituto de Biologia Molecular y Celular de Plantas," for computational support. This work was funded by the "Ministerio de Ciencia y Tecnologia" (Spain) (grant BFU2013-43726-P), and the "Direccio General de Recerca, Generalitat de Catalunya (Grup de Recerca Consolidat 2009 SGR 1101)" awarded to J.B. P.L. was supported by a Ph.D. fellowship from "Accion Estrategica de Salud, en el marco del Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011" from Instituto de Salud Carlos III. D.A.-P. was a "Juan de la Cierva" fellow from the "Ministerio de Economia y Competitividad" (Spain) (JCI-2011-11089). M.A.F. was supported by a Principal Investigator grant from Science Foundation Ireland (12/IP/1673) and a project from the "Ministerio de Economia y Competitividad" (grant number BFU2012-36346). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press (OUP) | es_ES |
dc.relation.ispartof | Genome Biology and Evolution | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Physical protein interaction | es_ES |
dc.subject | Protein interaction network | es_ES |
dc.subject | Natural selection | es_ES |
dc.subject | Positive selection | es_ES |
dc.subject | Mammals | es_ES |
dc.subject | Humans | es_ES |
dc.title | Recent Positive Selection Has Acted on Genes Encoding Proteins with More Interactions within the Whole Human Interactome | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/gbe/evv055 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2013-43726-P/ES/DETECCION Y COMPRENSION DE LAS HUELLAS DE SELECCION NATURAL EN EL GENOMA DE HUMANOS Y SIMIOS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/12/IP/1673/IE/ | en_EN |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2012-36346/ES/EL PAPEL DE LA DUPLICACION GENICA EN LA COMPLEJIDAD DE SISTEMAS BIOLOGICOS: RE-DIRECCION DE DINAMICAS MUTACIONALES Y ORIGEN DE INNOVACIONES BIOLOGICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//JCI-2011-11089/ES/JCI-2011-11089/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat de Catalunya//2009 SGR-1101/ES/2009 SGR-1101/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Luisi, P.; Alvarez-Ponce, D.; Pybus, M.; Fares Riaño, MA.; Bertranpetit, J.; Laayouni, H. (2015). Recent Positive Selection Has Acted on Genes Encoding Proteins with More Interactions within the Whole Human Interactome. Genome Biology and Evolution. 7(4):1141-1154. https://doi.org/10.1093/gbe/evv055 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1093/gbe/evv055 | es_ES |
dc.description.upvformatpinicio | 1141 | es_ES |
dc.description.upvformatpfin | 1154 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 308149 | es_ES |
dc.identifier.pmid | 25840415 | en_EN |
dc.identifier.pmcid | PMC4419801 | en_EN |
dc.description.references | (2012). An integrated map of genetic variation from 1,092 human genomes. Nature, 491(7422), 56-65. doi:10.1038/nature11632 | es_ES |
dc.description.references | Agrafioti, I., Swire, J., Abbott, J., Huntley, D., Butcher, S., & Stumpf, M. P. (2005). BMC Evolutionary Biology, 5(1), 23. doi:10.1186/1471-2148-5-23 | es_ES |
dc.description.references | Alvarez-Ponce, D. (2012). The relationship between the hierarchical position of proteins in the human signal transduction network and their rate of evolution. BMC Evolutionary Biology, 12(1), 192. doi:10.1186/1471-2148-12-192 | es_ES |
dc.description.references | Alvarez-Ponce, D. (2014). Why Proteins Evolve at Different Rates: The Determinants of Proteins’Rates of Evolution. Natural Selection, 126-178. doi:10.1201/b17795-8 | es_ES |
dc.description.references | Alvarez-Ponce, D., & Fares, M. A. (2012). Evolutionary Rate and Duplicability in the Arabidopsis thaliana Protein–Protein Interaction Network. Genome Biology and Evolution, 4(12), 1263-1274. doi:10.1093/gbe/evs101 | es_ES |
dc.description.references | Anisimova, M., Bielawski, J. P., & Yang, Z. (2001). Accuracy and Power of the Likelihood Ratio Test in Detecting Adaptive Molecular Evolution. Molecular Biology and Evolution, 18(8), 1585-1592. doi:10.1093/oxfordjournals.molbev.a003945 | es_ES |
dc.description.references | Bult, C. J., Eppig, J. T., Kadin, J. A., Richardson, J. E., & Blake, J. A. (2007). The Mouse Genome Database (MGD): mouse biology and model systems. Nucleic Acids Research, 36(Database), D724-D728. doi:10.1093/nar/gkm961 | es_ES |
dc.description.references | Bustamante, C. D., Fledel-Alon, A., Williamson, S., Nielsen, R., Todd Hubisz, M., Glanowski, S., … Clark, A. G. (2005). Natural selection on protein-coding genes in the human genome. Nature, 437(7062), 1153-1157. doi:10.1038/nature04240 | es_ES |
dc.description.references | Charlesworth, J., & Eyre-Walker, A. (2007). The other side of the nearly neutral theory, evidence of slightly advantageous back-mutations. Proceedings of the National Academy of Sciences, 104(43), 16992-16997. doi:10.1073/pnas.0705456104 | es_ES |
dc.description.references | Chen, H., Patterson, N., & Reich, D. (2010). Population differentiation as a test for selective sweeps. Genome Research, 20(3), 393-402. doi:10.1101/gr.100545.109 | es_ES |
dc.description.references | Coop, G., Pickrell, J. K., Novembre, J., Kudaravalli, S., Li, J., Absher, D., … Pritchard, J. K. (2009). The Role of Geography in Human Adaptation. PLoS Genetics, 5(6), e1000500. doi:10.1371/journal.pgen.1000500 | es_ES |
dc.description.references | Cork, J. M., & Purugganan, M. D. (2004). The evolution of molecular genetic pathways and networks. BioEssays, 26(5), 479-484. doi:10.1002/bies.20026 | es_ES |
dc.description.references | Cui, Q., Purisima, E. O., & Wang, E. (2009). Protein evolution on a human signaling network. BMC Systems Biology, 3(1), 21. doi:10.1186/1752-0509-3-21 | es_ES |
dc.description.references | Dall’Olio, G., Laayouni, H., Luisi, P., Sikora, M., Montanucci, L., & Bertranpetit, J. (2012). Distribution of events of positive selection and population differentiation in a metabolic pathway: the case of asparagine N-glycosylation. BMC Evolutionary Biology, 12(1), 98. doi:10.1186/1471-2148-12-98 | es_ES |
dc.description.references | Dixon, A. L., Liang, L., Moffatt, M. F., Chen, W., Heath, S., Wong, K. C. C., … Cookson, W. O. C. (2007). A genome-wide association study of global gene expression. Nature Genetics, 39(10), 1202-1207. doi:10.1038/ng2109 | es_ES |
dc.description.references | Do, C. B. (2005). ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Research, 15(2), 330-340. doi:10.1101/gr.2821705 | es_ES |
dc.description.references | Enard, D., Messer, P. W., & Petrov, D. A. (2014). Genome-wide signals of positive selection in human evolution. Genome Research, 24(6), 885-895. doi:10.1101/gr.164822.113 | es_ES |
dc.description.references | Fisher, R. A. (1930). The genetical theory of natural selection. doi:10.5962/bhl.title.27468 | es_ES |
dc.description.references | Flicek, P., Aken, B. L., Ballester, B., Beal, K., Bragin, E., Brent, S., … Fairley, S. (2009). Ensembl’s 10th year. Nucleic Acids Research, 38(suppl_1), D557-D562. doi:10.1093/nar/gkp972 | es_ES |
dc.description.references | Flowers, J., Sezgin, E., Kumagai, S., Duvernell, D., Matzkin, L., Schmidt, P., & Eanes, W. (2007). Adaptive Evolution of Metabolic Pathways in Drosophila. Molecular Biology and Evolution, 24(6), 1347-1354. doi:10.1093/molbev/msm057 | es_ES |
dc.description.references | Fraser, H. B. (2013). Gene expression drives local adaptation in humans. Genome Research, 23(7), 1089-1096. doi:10.1101/gr.152710.112 | es_ES |
dc.description.references | Fraser, H. B. (2002). Evolutionary Rate in the Protein Interaction Network. Science, 296(5568), 750-752. doi:10.1126/science.1068696 | es_ES |
dc.description.references | Grossman, S. R., Shylakhter, I., Karlsson, E. K., Byrne, E. H., Morales, S., Frieden, G., … Sabeti, P. C. (2010). A Composite of Multiple Signals Distinguishes Causal Variants in Regions of Positive Selection. Science, 327(5967), 883-886. doi:10.1126/science.1183863 | es_ES |
dc.description.references | Grossman, S. R., Andersen, K. G., Shlyakhter, I., Tabrizi, S., Winnicki, S., Yen, A., … Sabeti, P. C. (2013). Identifying Recent Adaptations in Large-Scale Genomic Data. Cell, 152(4), 703-713. doi:10.1016/j.cell.2013.01.035 | es_ES |
dc.description.references | Hahn, M. W., Conant, G. C., & Wagner, A. (2004). Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint? Journal of Molecular Evolution, 58(2), 203-211. doi:10.1007/s00239-003-2544-0 | es_ES |
dc.description.references | Hahn, M. W., & Kern, A. D. (2004). Comparative Genomics of Centrality and Essentiality in Three Eukaryotic Protein-Interaction Networks. Molecular Biology and Evolution, 22(4), 803-806. doi:10.1093/molbev/msi072 | es_ES |
dc.description.references | Hancock, A. M., Witonsky, D. B., Alkorta-Aranburu, G., Beall, C. M., Gebremedhin, A., Sukernik, R., … Di Rienzo, A. (2011). Adaptations to Climate-Mediated Selective Pressures in Humans. PLoS Genetics, 7(4), e1001375. doi:10.1371/journal.pgen.1001375 | es_ES |
dc.description.references | Hernandez, R. D., Kelley, J. L., Elyashiv, E., Melton, S. C., Auton, A., … McVean, G. (2011). Classic Selective Sweeps Were Rare in Recent Human Evolution. Science, 331(6019), 920-924. doi:10.1126/science.1198878 | es_ES |
dc.description.references | Hughes, A. L., & Friedman, R. (2009). More radical amino acid replacements in primates than in rodents: Support for the evolutionary role of effective population size. Gene, 440(1-2), 50-56. doi:10.1016/j.gene.2009.03.012 | es_ES |
dc.description.references | Iyer, S., Killingback, T., Sundaram, B., & Wang, Z. (2013). Attack Robustness and Centrality of Complex Networks. PLoS ONE, 8(4), e59613. doi:10.1371/journal.pone.0059613 | es_ES |
dc.description.references | Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., & Barabási, A.-L. (2000). The large-scale organization of metabolic networks. Nature, 407(6804), 651-654. doi:10.1038/35036627 | es_ES |
dc.description.references | Jordan, I. K., Wolf, Y. I., & Koonin, E. V. (2003). BMC Evolutionary Biology, 3(1), 1. doi:10.1186/1471-2148-3-1 | es_ES |
dc.description.references | Karolchik, D., Hinrichs, A. S., & Kent, W. J. (2009). The UCSC Genome Browser. Current Protocols in Bioinformatics, 28(1). doi:10.1002/0471250953.bi0104s28 | es_ES |
dc.description.references | Kelley, J. L. (2006). Genomic signatures of positive selection in humans and the limits of outlier approaches. Genome Research, 16(8), 980-989. doi:10.1101/gr.5157306 | es_ES |
dc.description.references | Kersey, P. J., Staines, D. M., Lawson, D., Kulesha, E., Derwent, P., Humphrey, J. C., … Birney, E. (2011). Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species. Nucleic Acids Research, 40(D1), D91-D97. doi:10.1093/nar/gkr895 | es_ES |
dc.description.references | Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., … Pandey, A. (2009). Human Protein Reference Database--2009 update. Nucleic Acids Research, 37(Database), D767-D772. doi:10.1093/nar/gkn892 | es_ES |
dc.description.references | Khurana, E., Fu, Y., Chen, J., & Gerstein, M. (2013). Interpretation of Genomic Variants Using a Unified Biological Network Approach. PLoS Computational Biology, 9(3), e1002886. doi:10.1371/journal.pcbi.1002886 | es_ES |
dc.description.references | Kim, P. M., Korbel, J. O., & Gerstein, M. B. (2007). Positive selection at the protein network periphery: Evaluation in terms of structural constraints and cellular context. Proceedings of the National Academy of Sciences, 104(51), 20274-20279. doi:10.1073/pnas.0710183104 | es_ES |
dc.description.references | Kosiol, C., Vinař, T., da Fonseca, R. R., Hubisz, M. J., Bustamante, C. D., Nielsen, R., & Siepel, A. (2008). Patterns of Positive Selection in Six Mammalian Genomes. PLoS Genetics, 4(8), e1000144. doi:10.1371/journal.pgen.1000144 | es_ES |
dc.description.references | Lappalainen, T., Sammeth, M., Friedländer, M. R., ‘t Hoen, P. A. C., Monlong, J., … Griebel, T. (2013). Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501(7468), 506-511. doi:10.1038/nature12531 | es_ES |
dc.description.references | Lemos, B. (2005). Evolution of Proteins and Gene Expression Levels are Coupled in Drosophila and are Independently Associated with mRNA Abundance, Protein Length, and Number of Protein-Protein Interactions. Molecular Biology and Evolution, 22(5), 1345-1354. doi:10.1093/molbev/msi122 | es_ES |
dc.description.references | Liang, L., Morar, N., Dixon, A. L., Lathrop, G. M., Abecasis, G. R., Moffatt, M. F., & Cookson, W. O. C. (2013). A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome Research, 23(4), 716-726. doi:10.1101/gr.142521.112 | es_ES |
dc.description.references | Liao, B.-Y., & Zhang, J. (2008). Null mutations in human and mouse orthologs frequently result in different phenotypes. Proceedings of the National Academy of Sciences, 105(19), 6987-6992. doi:10.1073/pnas.0800387105 | es_ES |
dc.description.references | Liow, L. H., Van Valen, L., & Stenseth, N. C. (2011). Red Queen: from populations to taxa and communities. Trends in Ecology & Evolution, 26(7), 349-358. doi:10.1016/j.tree.2011.03.016 | es_ES |
dc.description.references | Lovell, S. C., & Robertson, D. L. (2010). An Integrated View of Molecular Coevolution in Protein-Protein Interactions. Molecular Biology and Evolution, 27(11), 2567-2575. doi:10.1093/molbev/msq144 | es_ES |
dc.description.references | Luisi, P., Alvarez-Ponce, D., Dall’Olio, G. M., Sikora, M., Bertranpetit, J., & Laayouni, H. (2011). Network-Level and Population Genetics Analysis of the Insulin/TOR Signal Transduction Pathway Across Human Populations. Molecular Biology and Evolution, 29(5), 1379-1392. doi:10.1093/molbev/msr298 | es_ES |
dc.description.references | MacArthur, D. G., Balasubramanian, S., Frankish, A., Huang, N., Morris, J., Walter, K., … Montgomery, S. B. (2012). A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes. Science, 335(6070), 823-828. doi:10.1126/science.1215040 | es_ES |
dc.description.references | Martin, G. (2014). Fisher’s Geometrical Model Emerges as a Property of Complex Integrated Phenotypic Networks. Genetics, 197(1), 237-255. doi:10.1534/genetics.113.160325 | es_ES |
dc.description.references | McDonald, J. H., & Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351(6328), 652-654. doi:10.1038/351652a0 | es_ES |
dc.description.references | Mi, H., Muruganujan, A., & Thomas, P. D. (2012). PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Research, 41(D1), D377-D386. doi:10.1093/nar/gks1118 | es_ES |
dc.description.references | Montanucci, L., Laayouni, H., & Bertranpetit, J. (2014). The Network Framework of Molecular Evolution. Natural Selection, 179-210. doi:10.1201/b17795-9 | es_ES |
dc.description.references | Morar, N., Cookson, W. O. C. M., Harper, J. I., & Moffatt, M. F. (2007). Filaggrin Mutations in Children with Severe Atopic Dermatitis. Journal of Investigative Dermatology, 127(7), 1667-1672. doi:10.1038/sj.jid.5700739 | es_ES |
dc.description.references | Olson-Manning, C. F., Lee, C.-R., Rausher, M. D., & Mitchell-Olds, T. (2012). Evolution of Flux Control in the Glucosinolate Pathway in Arabidopsis thaliana. Molecular Biology and Evolution, 30(1), 14-23. doi:10.1093/molbev/mss204 | es_ES |
dc.description.references | Olson-Manning, C. F., Wagner, M. R., & Mitchell-Olds, T. (2012). Adaptive evolution: evaluating empirical support for theoretical predictions. Nature Reviews Genetics, 13(12), 867-877. doi:10.1038/nrg3322 | es_ES |
dc.description.references | Orr, H. A. (2005). The genetic theory of adaptation: a brief history. Nature Reviews Genetics, 6(2), 119-127. doi:10.1038/nrg1523 | es_ES |
dc.description.references | Pérez-Bercoff, Å., Hudson, C. M., & Conant, G. C. (2013). A Conserved Mammalian Protein Interaction Network. PLoS ONE, 8(1), e52581. doi:10.1371/journal.pone.0052581 | es_ES |
dc.description.references | Pickrell, J. K., Marioni, J. C., Pai, A. A., Degner, J. F., Engelhardt, B. E., Nkadori, E., … Pritchard, J. K. (2010). Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 464(7289), 768-772. doi:10.1038/nature08872 | es_ES |
dc.description.references | Pritchard, J. K., Pickrell, J. K., & Coop, G. (2010). The Genetics of Human Adaptation: Hard Sweeps, Soft Sweeps, and Polygenic Adaptation. Current Biology, 20(4), R208-R215. doi:10.1016/j.cub.2009.11.055 | es_ES |
dc.description.references | Pybus, M., Dall’Olio, G. M., Luisi, P., Uzkudun, M., Carreño-Torres, A., Pavlidis, P., … Engelken, J. (2013). 1000 Genomes Selection Browser 1.0: a genome browser dedicated to signatures of natural selection in modern humans. Nucleic Acids Research, 42(D1), D903-D909. doi:10.1093/nar/gkt1188 | es_ES |
dc.description.references | Rausher, M. D. (2012). THE EVOLUTION OF GENES IN BRANCHED METABOLIC PATHWAYS. Evolution, 67(1), 34-48. doi:10.1111/j.1558-5646.2012.01771.x | es_ES |
dc.description.references | Scheinfeldt, L. B., Biswas, S., Madeoy, J., Connelly, C. F., Schadt, E. E., & Akey, J. M. (2009). Population Genomic Analysis of ALMS1 in Humans Reveals a Surprisingly Complex Evolutionary History. Molecular Biology and Evolution, 26(6), 1357-1367. doi:10.1093/molbev/msp045 | es_ES |
dc.description.references | Stark, C., Breitkreutz, B.-J., Chatr-aryamontri, A., Boucher, L., Oughtred, R., Livstone, M. S., … Tyers, M. (2010). The BioGRID Interaction Database: 2011 update. Nucleic Acids Research, 39(Database), D698-D704. doi:10.1093/nar/gkq1116 | es_ES |
dc.description.references | Subramanian, S. (2013). Significance of Population Size on the Fixation of Nonsynonymous Mutations in Genes Under Varying Levels of Selection Pressure. Genetics, 193(3), 995-1002. doi:10.1534/genetics.112.147900 | es_ES |
dc.description.references | Talavera, G., & Castresana, J. (2007). Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. Systematic Biology, 56(4), 564-577. doi:10.1080/10635150701472164 | es_ES |
dc.description.references | Teshima, K. M. (2006). How reliable are empirical genomic scans for selective sweeps? Genome Research, 16(6), 702-712. doi:10.1101/gr.5105206 | es_ES |
dc.description.references | Vitkup, D., Kharchenko, P., & Wagner, A. (2006). Genome Biology, 7(5), R39. doi:10.1186/gb-2006-7-5-r39 | es_ES |
dc.description.references | Voight, B. F., Kudaravalli, S., Wen, X., & Pritchard, J. K. (2006). A Map of Recent Positive Selection in the Human Genome. PLoS Biology, 4(3), e72. doi:10.1371/journal.pbio.0040072 | es_ES |
dc.description.references | Wagner, A. (2012). Metabolic Networks and Their Evolution. Advances in Experimental Medicine and Biology, 29-52. doi:10.1007/978-1-4614-3567-9_2 | es_ES |
dc.description.references | Wright, K. M., & Rausher, M. D. (2009). The Evolution of Control and Distribution of Adaptive Mutations in a Metabolic Pathway. Genetics, 184(2), 483-502. doi:10.1534/genetics.109.110411 | es_ES |
dc.description.references | Yang, Z. (2005). Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection. Molecular Biology and Evolution, 22(4), 1107-1118. doi:10.1093/molbev/msi097 | es_ES |
dc.description.references | Zeng, K., Shi, S., & Wu, C.-I. (2007). Compound Tests for the Detection of Hitchhiking Under Positive Selection. Molecular Biology and Evolution, 24(8), 1898-1908. doi:10.1093/molbev/msm119 | es_ES |
dc.description.references | Zhai, W., Nielsen, R., & Slatkin, M. (2008). An Investigation of the Statistical Power of Neutrality Tests Based on Comparative and Population Genetic Data. Molecular Biology and Evolution, 26(2), 273-283. doi:10.1093/molbev/msn231 | es_ES |
dc.description.references | Zhang, J. (2005). Significant Impact of Protein Dispensability on the Instantaneous Rate of Protein Evolution. Molecular Biology and Evolution, 22(4), 1147-1155. doi:10.1093/molbev/msi101 | es_ES |