- -

Recent Positive Selection Has Acted on Genes Encoding Proteins with More Interactions within the Whole Human Interactome

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recent Positive Selection Has Acted on Genes Encoding Proteins with More Interactions within the Whole Human Interactome

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Luisi, P es_ES
dc.contributor.author Alvarez-Ponce, D es_ES
dc.contributor.author Pybus, M es_ES
dc.contributor.author Fares Riaño, Mario Ali es_ES
dc.contributor.author Bertranpetit, J es_ES
dc.contributor.author Laayouni, H es_ES
dc.date.accessioned 2016-07-22T09:19:32Z
dc.date.available 2016-07-22T09:19:32Z
dc.date.issued 2015-04
dc.identifier.issn 1759-6653
dc.identifier.uri http://hdl.handle.net/10251/68014
dc.description.abstract Genes vary in their likelihood to undergo adaptive evolution. The genomic factors that determine adaptability, however, remain poorly understood. Genes function in the context of molecular networks, with some occupying more important positions than others and thus being likely to be under stronger selective pressures. However, how positive selection distributes across the different parts of molecular networks is still not fully understood. Here, we inferred positive selection using comparative genomics and population genetics approaches through the comparison of 10 mammalian and 270 human genomes, respectively. In agreement with previous results, we found that genes with lower network centralities are more likely to evolve under positive selection (as inferred from divergence data). Surprisingly, polymorphism data yield results in the opposite direction than divergence data: Genes with higher centralities are more likely to have been targeted by recent positive selection during recent human evolution. Our results indicate that the relationship between centrality and the impact of adaptive evolution highly depends on the mode of positive selection and/or the evolutionary time-scale. es_ES
dc.description.sponsorship The authors thankfully acknowledge valuable discussion and corrections from Diego A. Hartasanchez, David A. Hughes, Jessica Nye, and Arcadi Navarro. They thank Gabriel Santpere for his help to compute the McDonald-Krietman test. They also thank the National Institute of Bioinformatics (http://www.inab.org) and Javier Forment, from the Bioinformatics service at the "Instituto de Biologia Molecular y Celular de Plantas," for computational support. This work was funded by the "Ministerio de Ciencia y Tecnologia" (Spain) (grant BFU2013-43726-P), and the "Direccio General de Recerca, Generalitat de Catalunya (Grup de Recerca Consolidat 2009 SGR 1101)" awarded to J.B. P.L. was supported by a Ph.D. fellowship from "Accion Estrategica de Salud, en el marco del Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011" from Instituto de Salud Carlos III. D.A.-P. was a "Juan de la Cierva" fellow from the "Ministerio de Economia y Competitividad" (Spain) (JCI-2011-11089). M.A.F. was supported by a Principal Investigator grant from Science Foundation Ireland (12/IP/1673) and a project from the "Ministerio de Economia y Competitividad" (grant number BFU2012-36346). en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP) es_ES
dc.relation.ispartof Genome Biology and Evolution es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Physical protein interaction es_ES
dc.subject Protein interaction network es_ES
dc.subject Natural selection es_ES
dc.subject Positive selection es_ES
dc.subject Mammals es_ES
dc.subject Humans es_ES
dc.title Recent Positive Selection Has Acted on Genes Encoding Proteins with More Interactions within the Whole Human Interactome es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/gbe/evv055
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2013-43726-P/ES/DETECCION Y COMPRENSION DE LAS HUELLAS DE SELECCION NATURAL EN EL GENOMA DE HUMANOS Y SIMIOS./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/12/IP/1673/IE/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-36346/ES/EL PAPEL DE LA DUPLICACION GENICA EN LA COMPLEJIDAD DE SISTEMAS BIOLOGICOS: RE-DIRECCION DE DINAMICAS MUTACIONALES Y ORIGEN DE INNOVACIONES BIOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//JCI-2011-11089/ES/JCI-2011-11089/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2009 SGR-1101/ES/2009 SGR-1101/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Luisi, P.; Alvarez-Ponce, D.; Pybus, M.; Fares Riaño, MA.; Bertranpetit, J.; Laayouni, H. (2015). Recent Positive Selection Has Acted on Genes Encoding Proteins with More Interactions within the Whole Human Interactome. Genome Biology and Evolution. 7(4):1141-1154. https://doi.org/10.1093/gbe/evv055 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1093/gbe/evv055 es_ES
dc.description.upvformatpinicio 1141 es_ES
dc.description.upvformatpfin 1154 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 308149 es_ES
dc.identifier.pmid 25840415 en_EN
dc.identifier.pmcid PMC4419801 en_EN
dc.description.references (2012). An integrated map of genetic variation from 1,092 human genomes. Nature, 491(7422), 56-65. doi:10.1038/nature11632 es_ES
dc.description.references Agrafioti, I., Swire, J., Abbott, J., Huntley, D., Butcher, S., & Stumpf, M. P. (2005). BMC Evolutionary Biology, 5(1), 23. doi:10.1186/1471-2148-5-23 es_ES
dc.description.references Alvarez-Ponce, D. (2012). The relationship between the hierarchical position of proteins in the human signal transduction network and their rate of evolution. BMC Evolutionary Biology, 12(1), 192. doi:10.1186/1471-2148-12-192 es_ES
dc.description.references Alvarez-Ponce, D. (2014). Why Proteins Evolve at Different Rates: The Determinants of Proteins’Rates of Evolution. Natural Selection, 126-178. doi:10.1201/b17795-8 es_ES
dc.description.references Alvarez-Ponce, D., & Fares, M. A. (2012). Evolutionary Rate and Duplicability in the Arabidopsis thaliana Protein–Protein Interaction Network. Genome Biology and Evolution, 4(12), 1263-1274. doi:10.1093/gbe/evs101 es_ES
dc.description.references Anisimova, M., Bielawski, J. P., & Yang, Z. (2001). Accuracy and Power of the Likelihood Ratio Test in Detecting Adaptive Molecular Evolution. Molecular Biology and Evolution, 18(8), 1585-1592. doi:10.1093/oxfordjournals.molbev.a003945 es_ES
dc.description.references Bult, C. J., Eppig, J. T., Kadin, J. A., Richardson, J. E., & Blake, J. A. (2007). The Mouse Genome Database (MGD): mouse biology and model systems. Nucleic Acids Research, 36(Database), D724-D728. doi:10.1093/nar/gkm961 es_ES
dc.description.references Bustamante, C. D., Fledel-Alon, A., Williamson, S., Nielsen, R., Todd Hubisz, M., Glanowski, S., … Clark, A. G. (2005). Natural selection on protein-coding genes in the human genome. Nature, 437(7062), 1153-1157. doi:10.1038/nature04240 es_ES
dc.description.references Charlesworth, J., & Eyre-Walker, A. (2007). The other side of the nearly neutral theory, evidence of slightly advantageous back-mutations. Proceedings of the National Academy of Sciences, 104(43), 16992-16997. doi:10.1073/pnas.0705456104 es_ES
dc.description.references Chen, H., Patterson, N., & Reich, D. (2010). Population differentiation as a test for selective sweeps. Genome Research, 20(3), 393-402. doi:10.1101/gr.100545.109 es_ES
dc.description.references Coop, G., Pickrell, J. K., Novembre, J., Kudaravalli, S., Li, J., Absher, D., … Pritchard, J. K. (2009). The Role of Geography in Human Adaptation. PLoS Genetics, 5(6), e1000500. doi:10.1371/journal.pgen.1000500 es_ES
dc.description.references Cork, J. M., & Purugganan, M. D. (2004). The evolution of molecular genetic pathways and networks. BioEssays, 26(5), 479-484. doi:10.1002/bies.20026 es_ES
dc.description.references Cui, Q., Purisima, E. O., & Wang, E. (2009). Protein evolution on a human signaling network. BMC Systems Biology, 3(1), 21. doi:10.1186/1752-0509-3-21 es_ES
dc.description.references Dall’Olio, G., Laayouni, H., Luisi, P., Sikora, M., Montanucci, L., & Bertranpetit, J. (2012). Distribution of events of positive selection and population differentiation in a metabolic pathway: the case of asparagine N-glycosylation. BMC Evolutionary Biology, 12(1), 98. doi:10.1186/1471-2148-12-98 es_ES
dc.description.references Dixon, A. L., Liang, L., Moffatt, M. F., Chen, W., Heath, S., Wong, K. C. C., … Cookson, W. O. C. (2007). A genome-wide association study of global gene expression. Nature Genetics, 39(10), 1202-1207. doi:10.1038/ng2109 es_ES
dc.description.references Do, C. B. (2005). ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Research, 15(2), 330-340. doi:10.1101/gr.2821705 es_ES
dc.description.references Enard, D., Messer, P. W., & Petrov, D. A. (2014). Genome-wide signals of positive selection in human evolution. Genome Research, 24(6), 885-895. doi:10.1101/gr.164822.113 es_ES
dc.description.references Fisher, R. A. (1930). The genetical theory of natural selection. doi:10.5962/bhl.title.27468 es_ES
dc.description.references Flicek, P., Aken, B. L., Ballester, B., Beal, K., Bragin, E., Brent, S., … Fairley, S. (2009). Ensembl’s 10th year. Nucleic Acids Research, 38(suppl_1), D557-D562. doi:10.1093/nar/gkp972 es_ES
dc.description.references Flowers, J., Sezgin, E., Kumagai, S., Duvernell, D., Matzkin, L., Schmidt, P., & Eanes, W. (2007). Adaptive Evolution of Metabolic Pathways in Drosophila. Molecular Biology and Evolution, 24(6), 1347-1354. doi:10.1093/molbev/msm057 es_ES
dc.description.references Fraser, H. B. (2013). Gene expression drives local adaptation in humans. Genome Research, 23(7), 1089-1096. doi:10.1101/gr.152710.112 es_ES
dc.description.references Fraser, H. B. (2002). Evolutionary Rate in the Protein Interaction Network. Science, 296(5568), 750-752. doi:10.1126/science.1068696 es_ES
dc.description.references Grossman, S. R., Shylakhter, I., Karlsson, E. K., Byrne, E. H., Morales, S., Frieden, G., … Sabeti, P. C. (2010). A Composite of Multiple Signals Distinguishes Causal Variants in Regions of Positive Selection. Science, 327(5967), 883-886. doi:10.1126/science.1183863 es_ES
dc.description.references Grossman, S. R., Andersen, K. G., Shlyakhter, I., Tabrizi, S., Winnicki, S., Yen, A., … Sabeti, P. C. (2013). Identifying Recent Adaptations in Large-Scale Genomic Data. Cell, 152(4), 703-713. doi:10.1016/j.cell.2013.01.035 es_ES
dc.description.references Hahn, M. W., Conant, G. C., & Wagner, A. (2004). Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint? Journal of Molecular Evolution, 58(2), 203-211. doi:10.1007/s00239-003-2544-0 es_ES
dc.description.references Hahn, M. W., & Kern, A. D. (2004). Comparative Genomics of Centrality and Essentiality in Three Eukaryotic Protein-Interaction Networks. Molecular Biology and Evolution, 22(4), 803-806. doi:10.1093/molbev/msi072 es_ES
dc.description.references Hancock, A. M., Witonsky, D. B., Alkorta-Aranburu, G., Beall, C. M., Gebremedhin, A., Sukernik, R., … Di Rienzo, A. (2011). Adaptations to Climate-Mediated Selective Pressures in Humans. PLoS Genetics, 7(4), e1001375. doi:10.1371/journal.pgen.1001375 es_ES
dc.description.references Hernandez, R. D., Kelley, J. L., Elyashiv, E., Melton, S. C., Auton, A., … McVean, G. (2011). Classic Selective Sweeps Were Rare in Recent Human Evolution. Science, 331(6019), 920-924. doi:10.1126/science.1198878 es_ES
dc.description.references Hughes, A. L., & Friedman, R. (2009). More radical amino acid replacements in primates than in rodents: Support for the evolutionary role of effective population size. Gene, 440(1-2), 50-56. doi:10.1016/j.gene.2009.03.012 es_ES
dc.description.references Iyer, S., Killingback, T., Sundaram, B., & Wang, Z. (2013). Attack Robustness and Centrality of Complex Networks. PLoS ONE, 8(4), e59613. doi:10.1371/journal.pone.0059613 es_ES
dc.description.references Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., & Barabási, A.-L. (2000). The large-scale organization of metabolic networks. Nature, 407(6804), 651-654. doi:10.1038/35036627 es_ES
dc.description.references Jordan, I. K., Wolf, Y. I., & Koonin, E. V. (2003). BMC Evolutionary Biology, 3(1), 1. doi:10.1186/1471-2148-3-1 es_ES
dc.description.references Karolchik, D., Hinrichs, A. S., & Kent, W. J. (2009). The UCSC Genome Browser. Current Protocols in Bioinformatics, 28(1). doi:10.1002/0471250953.bi0104s28 es_ES
dc.description.references Kelley, J. L. (2006). Genomic signatures of positive selection in humans and the limits of outlier approaches. Genome Research, 16(8), 980-989. doi:10.1101/gr.5157306 es_ES
dc.description.references Kersey, P. J., Staines, D. M., Lawson, D., Kulesha, E., Derwent, P., Humphrey, J. C., … Birney, E. (2011). Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species. Nucleic Acids Research, 40(D1), D91-D97. doi:10.1093/nar/gkr895 es_ES
dc.description.references Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., … Pandey, A. (2009). Human Protein Reference Database--2009 update. Nucleic Acids Research, 37(Database), D767-D772. doi:10.1093/nar/gkn892 es_ES
dc.description.references Khurana, E., Fu, Y., Chen, J., & Gerstein, M. (2013). Interpretation of Genomic Variants Using a Unified Biological Network Approach. PLoS Computational Biology, 9(3), e1002886. doi:10.1371/journal.pcbi.1002886 es_ES
dc.description.references Kim, P. M., Korbel, J. O., & Gerstein, M. B. (2007). Positive selection at the protein network periphery: Evaluation in terms of structural constraints and cellular context. Proceedings of the National Academy of Sciences, 104(51), 20274-20279. doi:10.1073/pnas.0710183104 es_ES
dc.description.references Kosiol, C., Vinař, T., da Fonseca, R. R., Hubisz, M. J., Bustamante, C. D., Nielsen, R., & Siepel, A. (2008). Patterns of Positive Selection in Six Mammalian Genomes. PLoS Genetics, 4(8), e1000144. doi:10.1371/journal.pgen.1000144 es_ES
dc.description.references Lappalainen, T., Sammeth, M., Friedländer, M. R., ‘t Hoen, P. A. C., Monlong, J., … Griebel, T. (2013). Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501(7468), 506-511. doi:10.1038/nature12531 es_ES
dc.description.references Lemos, B. (2005). Evolution of Proteins and Gene Expression Levels are Coupled in Drosophila and are Independently Associated with mRNA Abundance, Protein Length, and Number of Protein-Protein Interactions. Molecular Biology and Evolution, 22(5), 1345-1354. doi:10.1093/molbev/msi122 es_ES
dc.description.references Liang, L., Morar, N., Dixon, A. L., Lathrop, G. M., Abecasis, G. R., Moffatt, M. F., & Cookson, W. O. C. (2013). A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome Research, 23(4), 716-726. doi:10.1101/gr.142521.112 es_ES
dc.description.references Liao, B.-Y., & Zhang, J. (2008). Null mutations in human and mouse orthologs frequently result in different phenotypes. Proceedings of the National Academy of Sciences, 105(19), 6987-6992. doi:10.1073/pnas.0800387105 es_ES
dc.description.references Liow, L. H., Van Valen, L., & Stenseth, N. C. (2011). Red Queen: from populations to taxa and communities. Trends in Ecology & Evolution, 26(7), 349-358. doi:10.1016/j.tree.2011.03.016 es_ES
dc.description.references Lovell, S. C., & Robertson, D. L. (2010). An Integrated View of Molecular Coevolution in Protein-Protein Interactions. Molecular Biology and Evolution, 27(11), 2567-2575. doi:10.1093/molbev/msq144 es_ES
dc.description.references Luisi, P., Alvarez-Ponce, D., Dall’Olio, G. M., Sikora, M., Bertranpetit, J., & Laayouni, H. (2011). Network-Level and Population Genetics Analysis of the Insulin/TOR Signal Transduction Pathway Across Human Populations. Molecular Biology and Evolution, 29(5), 1379-1392. doi:10.1093/molbev/msr298 es_ES
dc.description.references MacArthur, D. G., Balasubramanian, S., Frankish, A., Huang, N., Morris, J., Walter, K., … Montgomery, S. B. (2012). A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes. Science, 335(6070), 823-828. doi:10.1126/science.1215040 es_ES
dc.description.references Martin, G. (2014). Fisher’s Geometrical Model Emerges as a Property of Complex Integrated Phenotypic Networks. Genetics, 197(1), 237-255. doi:10.1534/genetics.113.160325 es_ES
dc.description.references McDonald, J. H., & Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351(6328), 652-654. doi:10.1038/351652a0 es_ES
dc.description.references Mi, H., Muruganujan, A., & Thomas, P. D. (2012). PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Research, 41(D1), D377-D386. doi:10.1093/nar/gks1118 es_ES
dc.description.references Montanucci, L., Laayouni, H., & Bertranpetit, J. (2014). The Network Framework of Molecular Evolution. Natural Selection, 179-210. doi:10.1201/b17795-9 es_ES
dc.description.references Morar, N., Cookson, W. O. C. M., Harper, J. I., & Moffatt, M. F. (2007). Filaggrin Mutations in Children with Severe Atopic Dermatitis. Journal of Investigative Dermatology, 127(7), 1667-1672. doi:10.1038/sj.jid.5700739 es_ES
dc.description.references Olson-Manning, C. F., Lee, C.-R., Rausher, M. D., & Mitchell-Olds, T. (2012). Evolution of Flux Control in the Glucosinolate Pathway in Arabidopsis thaliana. Molecular Biology and Evolution, 30(1), 14-23. doi:10.1093/molbev/mss204 es_ES
dc.description.references Olson-Manning, C. F., Wagner, M. R., & Mitchell-Olds, T. (2012). Adaptive evolution: evaluating empirical support for theoretical predictions. Nature Reviews Genetics, 13(12), 867-877. doi:10.1038/nrg3322 es_ES
dc.description.references Orr, H. A. (2005). The genetic theory of adaptation: a brief history. Nature Reviews Genetics, 6(2), 119-127. doi:10.1038/nrg1523 es_ES
dc.description.references Pérez-Bercoff, Å., Hudson, C. M., & Conant, G. C. (2013). A Conserved Mammalian Protein Interaction Network. PLoS ONE, 8(1), e52581. doi:10.1371/journal.pone.0052581 es_ES
dc.description.references Pickrell, J. K., Marioni, J. C., Pai, A. A., Degner, J. F., Engelhardt, B. E., Nkadori, E., … Pritchard, J. K. (2010). Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 464(7289), 768-772. doi:10.1038/nature08872 es_ES
dc.description.references Pritchard, J. K., Pickrell, J. K., & Coop, G. (2010). The Genetics of Human Adaptation: Hard Sweeps, Soft Sweeps, and Polygenic Adaptation. Current Biology, 20(4), R208-R215. doi:10.1016/j.cub.2009.11.055 es_ES
dc.description.references Pybus, M., Dall’Olio, G. M., Luisi, P., Uzkudun, M., Carreño-Torres, A., Pavlidis, P., … Engelken, J. (2013). 1000 Genomes Selection Browser 1.0: a genome browser dedicated to signatures of natural selection in modern humans. Nucleic Acids Research, 42(D1), D903-D909. doi:10.1093/nar/gkt1188 es_ES
dc.description.references Rausher, M. D. (2012). THE EVOLUTION OF GENES IN BRANCHED METABOLIC PATHWAYS. Evolution, 67(1), 34-48. doi:10.1111/j.1558-5646.2012.01771.x es_ES
dc.description.references Scheinfeldt, L. B., Biswas, S., Madeoy, J., Connelly, C. F., Schadt, E. E., & Akey, J. M. (2009). Population Genomic Analysis of ALMS1 in Humans Reveals a Surprisingly Complex Evolutionary History. Molecular Biology and Evolution, 26(6), 1357-1367. doi:10.1093/molbev/msp045 es_ES
dc.description.references Stark, C., Breitkreutz, B.-J., Chatr-aryamontri, A., Boucher, L., Oughtred, R., Livstone, M. S., … Tyers, M. (2010). The BioGRID Interaction Database: 2011 update. Nucleic Acids Research, 39(Database), D698-D704. doi:10.1093/nar/gkq1116 es_ES
dc.description.references Subramanian, S. (2013). Significance of Population Size on the Fixation of Nonsynonymous Mutations in Genes Under Varying Levels of Selection Pressure. Genetics, 193(3), 995-1002. doi:10.1534/genetics.112.147900 es_ES
dc.description.references Talavera, G., & Castresana, J. (2007). Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. Systematic Biology, 56(4), 564-577. doi:10.1080/10635150701472164 es_ES
dc.description.references Teshima, K. M. (2006). How reliable are empirical genomic scans for selective sweeps? Genome Research, 16(6), 702-712. doi:10.1101/gr.5105206 es_ES
dc.description.references Vitkup, D., Kharchenko, P., & Wagner, A. (2006). Genome Biology, 7(5), R39. doi:10.1186/gb-2006-7-5-r39 es_ES
dc.description.references Voight, B. F., Kudaravalli, S., Wen, X., & Pritchard, J. K. (2006). A Map of Recent Positive Selection in the Human Genome. PLoS Biology, 4(3), e72. doi:10.1371/journal.pbio.0040072 es_ES
dc.description.references Wagner, A. (2012). Metabolic Networks and Their Evolution. Advances in Experimental Medicine and Biology, 29-52. doi:10.1007/978-1-4614-3567-9_2 es_ES
dc.description.references Wright, K. M., & Rausher, M. D. (2009). The Evolution of Control and Distribution of Adaptive Mutations in a Metabolic Pathway. Genetics, 184(2), 483-502. doi:10.1534/genetics.109.110411 es_ES
dc.description.references Yang, Z. (2005). Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection. Molecular Biology and Evolution, 22(4), 1107-1118. doi:10.1093/molbev/msi097 es_ES
dc.description.references Zeng, K., Shi, S., & Wu, C.-I. (2007). Compound Tests for the Detection of Hitchhiking Under Positive Selection. Molecular Biology and Evolution, 24(8), 1898-1908. doi:10.1093/molbev/msm119 es_ES
dc.description.references Zhai, W., Nielsen, R., & Slatkin, M. (2008). An Investigation of the Statistical Power of Neutrality Tests Based on Comparative and Population Genetic Data. Molecular Biology and Evolution, 26(2), 273-283. doi:10.1093/molbev/msn231 es_ES
dc.description.references Zhang, J. (2005). Significant Impact of Protein Dispensability on the Instantaneous Rate of Protein Evolution. Molecular Biology and Evolution, 22(4), 1147-1155. doi:10.1093/molbev/msi101 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem