- -

The Flyby Anomaly in an Extended Whitehead’s Theory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Flyby Anomaly in an Extended Whitehead’s Theory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Acedo Rodríguez, Luis es_ES
dc.date.accessioned 2016-07-22T09:35:53Z
dc.date.available 2016-07-22T09:35:53Z
dc.date.issued 2015-07-30
dc.identifier.issn 2075-4434
dc.identifier.uri http://hdl.handle.net/10251/68016
dc.description.abstract In this paper, we consider an extended version of Whitehead s theory of gravity in connection with the flyby anomaly. Whitehead s theory is a linear approximation defined in a background Minkowski spacetime, which gives the same solutions as standard general relativity for the Schwarzschild and Kerr metrics cast in Kerr Schild coordinates. For a long time and because it gives the same results for the three classical tests perihelion advance, light bending and gravitational redshift it was considered a viable alternative to general relativity, but as it is really a linear approximation, it fails in more stringent tests. The model considered in this paper is a formal generalization of Whitehead s theory, including all possible bilinear forms. In the resulting theory, a circulating vector field of force in the low velocities approximation for a rotating planet is deduced, in addition to Newtonian gravity. This extra force gives rise to small variations in the asymptotic velocities of flybys around the Earth to be compared to the recently reported flyby anomaly. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Galaxies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Experimental tests of gravitational theories es_ES
dc.subject Modified theories of gravity es_ES
dc.subject Perihelion precession es_ES
dc.title The Flyby Anomaly in an Extended Whitehead’s Theory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/galaxies3030113
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Acedo Rodríguez, L. (2015). The Flyby Anomaly in an Extended Whitehead’s Theory. Galaxies. 3(3):113-128. doi:10.3390/galaxies3030113 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/galaxies3030113 es_ES
dc.description.upvformatpinicio 113 es_ES
dc.description.upvformatpfin 128 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 306606 es_ES
dc.description.references A Generalized Whiteheadian Theory of Gravity: The Kerr Solution, unpublished paper, 1986 http://www.ctr4process.org/publications/ProcessStudies/PSS/2004-6-Russell-Wasserman-A_Generalized_Whiteheadian_Theory _of_Gravity.pdf es_ES
dc.description.references Kerr, R. P., & Schild, A. (1965). Some algebraically degenerate solutions of Einstein’s gravitational field equations. Proceedings of Symposia in Applied Mathematics, 199-209. doi:10.1090/psapm/017/0216846 es_ES
dc.description.references Shapiro, I. I. (1964). Fourth Test of General Relativity. Physical Review Letters, 13(26), 789-791. doi:10.1103/physrevlett.13.789 es_ES
dc.description.references Everitt, C. W. F., DeBra, D. B., Parkinson, B. W., Turneaure, J. P., Conklin, J. W., Heifetz, M. I., … Wang, S. (2011). Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Physical Review Letters, 106(22). doi:10.1103/physrevlett.106.221101 es_ES
dc.description.references Everitt, C. W. F., Adams, M., Bencze, W., Buchman, S., Clarke, B., Conklin, J. W., … Worden, P. W. (2009). Gravity Probe B Data Analysis. Space Science Reviews, 148(1-4), 53-69. doi:10.1007/s11214-009-9524-7 es_ES
dc.description.references Gibbons, G., & Will, C. M. (2008). On the multiple deaths of Whitehead’s theory of gravity. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 39(1), 41-61. doi:10.1016/j.shpsb.2007.04.004 es_ES
dc.description.references Bain, J. (1998). Whitehead’s Theory of Gravity. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 29(4), 547-574. doi:10.1016/s1355-2198(98)00022-7 es_ES
dc.description.references Reinhardt, M., & Rosenblum, A. (1974). Whitehead contra Einstein. Physics Letters A, 48(2), 115-116. doi:10.1016/0375-9601(74)90425-3 es_ES
dc.description.references Hunter, A., & Fowler, A. (1934). The Solar Limb Effect. Monthly Notices of the Royal Astronomical Society, 94(7), 594-602. doi:10.1093/mnras/94.7.594 es_ES
dc.description.references Adam, M. G., Ibbetson, P. A., & Petford, A. D. (1976). The Solar Limb Effect: Observations of Line Contours and Line Shifts. Monthly Notices of the Royal Astronomical Society, 177(3), 687-708. doi:10.1093/mnras/177.3.687 es_ES
dc.description.references Anderson, J. D., Campbell, J. K., Ekelund, J. E., Ellis, J., & Jordan, J. F. (2008). Anomalous Orbital-Energy Changes Observed during Spacecraft Flybys of Earth. Physical Review Letters, 100(9). doi:10.1103/physrevlett.100.091102 es_ES
dc.description.references Iorio, L. (2015). Gravitational anomalies in the solar system? International Journal of Modern Physics D, 24(06), 1530015. doi:10.1142/s0218271815300153 es_ES
dc.description.references Poincaré, M. H. (1906). Sur la dynamique de l’électron. Rendiconti del Circolo matematico di Palermo, 21(1), 129-175. doi:10.1007/bf03013466 es_ES
dc.description.references Carlip, S. (2000). Aberration and the speed of gravity. Physics Letters A, 267(2-3), 81-87. doi:10.1016/s0375-9601(00)00101-8 es_ES
dc.description.references A new look inside the theory of the linear approximation: Gravity assists and Flybys http://www.lluisbel.com/upload/OnHold/FlyBys.pdf es_ES
dc.description.references Chapront, J., Chapront-Touzé, M., & Francou, G. (2002). A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements. Astronomy & Astrophysics, 387(2), 700-709. doi:10.1051/0004-6361:20020420 es_ES
dc.description.references DE430 Lunar Orbit, Physical Librations, and Surface Coordinates http://proba2.sidc.be/aux/data/spice/docs/DE430_Lunar_Ephemeris_and_Orientation.pdf es_ES
dc.description.references Adler, S. L. (2009). Can the flyby anomaly be attributed to earth-bound dark matter? Physical Review D, 79(2). doi:10.1103/physrevd.79.023505 es_ES
dc.description.references Pinheiro, M. J. (2014). The flyby anomaly and the effect of a topological torsion current. Physics Letters A, 378(41), 3007-3011. doi:10.1016/j.physleta.2014.09.003 es_ES
dc.description.references Acedo, L. (2014). The flyby anomaly: A case for strong gravitomagnetism? Advances in Space Research, 54(4), 788-796. doi:10.1016/j.asr.2014.04.014 es_ES
dc.description.references Iorio, L. (2014). A flyby anomaly for Juno? Not from standard physics. Advances in Space Research, 54(11), 2441-2445. doi:10.1016/j.asr.2014.06.035 es_ES
dc.description.references Iorio, L. (2009). The Effect of General Relativity on Hyperbolic Orbits and Its Application to the Flyby Anomaly. Scholarly Research Exchange, 2009, 1-8. doi:10.3814/2009/807695 es_ES
dc.description.references Ciufolini, I., Paolozzi, A., Koenig, R., Pavlis, E. C., Ries, J., Matzner, R., … Paris, C. (2013). Fundamental Physics and General Relativity with the LARES and LAGEOS satellites. Nuclear Physics B - Proceedings Supplements, 243-244, 180-193. doi:10.1016/j.nuclphysbps.2013.09.005 es_ES
dc.description.references Ciufolini, I., Paolozzi, A., Pavlis, E., Ries, J., Gurzadyan, V., Koenig, R., … Sindoni, G. (2012). Testing General Relativity and gravitational physics using the LARES satellite. The European Physical Journal Plus, 127(11). doi:10.1140/epjp/i2012-12133-8 es_ES
dc.description.references Renzetti, G. (2012). Are higher degree even zonals really harmful for the LARES/LAGEOS frame-dragging experiment? Canadian Journal of Physics, 90(9), 883-888. doi:10.1139/p2012-081 es_ES
dc.description.references Renzetti, G. (2013). First results from LARES: An analysis. New Astronomy, 23-24, 63-66. doi:10.1016/j.newast.2013.03.001 es_ES
dc.description.references Renzetti, G. (2014). Some reflections on the Lageos frame-dragging experiment in view of recent data analyses. New Astronomy, 29, 25-27. doi:10.1016/j.newast.2013.10.008 es_ES
dc.description.references Iorio, L., Luca Ruggiero, M., & Corda, C. (2013). Novel considerations about the error budget of the LAGEOS-based tests of frame-dragging with GRACE geopotential models. Acta Astronautica, 91, 141-148. doi:10.1016/j.actaastro.2013.06.002 es_ES
dc.description.references Iorio, L., Lichtenegger, H. I. M., Ruggiero, M. L., & Corda, C. (2010). Phenomenology of the Lense-Thirring effect in the solar system. Astrophysics and Space Science, 331(2), 351-395. doi:10.1007/s10509-010-0489-5 es_ES
dc.description.references Iorio, L. (2008). An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging. Space Science Reviews, 148(1-4), 363-381. doi:10.1007/s11214-008-9478-1 es_ES
dc.description.references Páramos, J., & Hechenblaikner, G. (2013). Probing the flyby anomaly with the future STE-QUEST mission. Planetary and Space Science, 79-80, 76-81. doi:10.1016/j.pss.2013.02.005 es_ES
dc.description.references Iorio, L. (2010). Juno, the angular momentum of Jupiter and the Lense–Thirring effect. New Astronomy, 15(6), 554-560. doi:10.1016/j.newast.2010.01.004 es_ES
dc.description.references Tommei, G., Dimare, L., Serra, D., & Milani, A. (2014). On the Juno radio science experiment: models, algorithms and sensitivity analysis. Monthly Notices of the Royal Astronomical Society, 446(3), 3089-3099. doi:10.1093/mnras/stu2328 es_ES
dc.description.references Helled, R., Anderson, J. D., Schubert, G., & Stevenson, D. J. (2011). Jupiter’s moment of inertia: A possible determination by Juno. Icarus, 216(2), 440-448. doi:10.1016/j.icarus.2011.09.016 es_ES
dc.description.references The Determination of Jupiter’s Angular Momentum from the Lense-Thirring Precession of the Juno Spacecraft http://adsabs.harvard.edu/abs/2011AGUFM.P41B1620F es_ES
dc.description.references Iorio, L. (2013). A possible new test of general relativity with Juno. Classical and Quantum Gravity, 30(19), 195011. doi:10.1088/0264-9381/30/19/195011 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem