dc.contributor.author |
Hernández-Sánchez, IE
|
es_ES |
dc.contributor.author |
Maruri-López, I
|
es_ES |
dc.contributor.author |
Ferrando Monleón, Alejandro Ramón
|
es_ES |
dc.contributor.author |
Carbonell Gisbert, Juan
|
es_ES |
dc.contributor.author |
Graether, SP
|
es_ES |
dc.contributor.author |
Jimenez-Bremont, JF
|
es_ES |
dc.date.accessioned |
2016-07-22T10:18:48Z |
|
dc.date.available |
2016-07-22T10:18:48Z |
|
dc.date.issued |
2015-09-07 |
|
dc.identifier.issn |
1664-462X |
|
dc.identifier.uri |
http://hdl.handle.net/10251/68027 |
|
dc.description.abstract |
The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1 - Delta His version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization. |
es_ES |
dc.description.sponsorship |
This work was supported by the CONACYT (Investigacion Ciencia Basica CB-2013-221075) funding to JJ, NSERC Discovery Grant to SG, and funding from the Spanish MICINN/MINECO (BIO2011-23828) to AF and MICINN (BIO2011-23828) to JC. The authors acknowledge to Marisol Gascon Irian from Institut de Biologia Molecular y Celular de Plantas and Nydia Hernandez-Rios from Neurology Institute-UNAM for their technical assistance using the confocal laser-scanning microscope. |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
Frontiers Media |
es_ES |
dc.relation.ispartof |
Frontiers in Plant Science |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Dehydrin |
es_ES |
dc.subject |
BiFC |
es_ES |
dc.subject |
Homodimer |
es_ES |
dc.subject |
Histidine-rich motif |
es_ES |
dc.subject |
Nuclear/cytoplasmic localization |
es_ES |
dc.title |
Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich domain |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.3389/fpls.2015.00702 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/CONACYT//CB-2013-221075/MX/Caracterización de genes que codifican para una nueva familia de proteínas duf1399 involucradas en el desarrollo y la respuesta al estrés abiótico en arabidopsis thaliana (2014)/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//BIO2011-23828/ES/CONTROL DE LA DIFERENCIACION DEL XILEMA POR LOS FACTORES DE TRANSCRIPCION AJAX/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes |
es_ES |
dc.description.bibliographicCitation |
Hernández-Sánchez, I.; Maruri-López, I.; Ferrando Monleón, AR.; Carbonell Gisbert, J.; Graether, S.; Jimenez-Bremont, J. (2015). Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich domain. Frontiers in Plant Science. 6(702):1-8. https://doi.org/10.3389/fpls.2015.00702 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.3389/fpls.2015.00702 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
8 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
6 |
es_ES |
dc.description.issue |
702 |
es_ES |
dc.relation.senia |
304683 |
es_ES |
dc.identifier.pmcid |
PMC4561349 |
en_EN |
dc.contributor.funder |
Ministerio de Ciencia e Innovación |
es_ES |
dc.contributor.funder |
Consejo Nacional de Ciencia y Tecnología, México |
es_ES |
dc.contributor.funder |
Natural Sciences and Engineering Research Council of Canada |
es_ES |
dc.description.references |
Alsheikh, M. K., Heyen, B. J., & Randall, S. K. (2003). Ion Binding Properties of the Dehydrin ERD14 Are Dependent upon Phosphorylation. Journal of Biological Chemistry, 278(42), 40882-40889. doi:10.1074/jbc.m307151200 |
es_ES |
dc.description.references |
Belda-Palazón, B., Ruiz, L., Martí, E., Tárraga, S., Tiburcio, A. F., Culiáñez, F., … Ferrando, A. (2012). Aminopropyltransferases Involved in Polyamine Biosynthesis Localize Preferentially in the Nucleus of Plant Cells. PLoS ONE, 7(10), e46907. doi:10.1371/journal.pone.0046907 |
es_ES |
dc.description.references |
Briesemeister, S., Rahnenf�hrer, J., & Kohlbacher, O. (2010). YLoc—an interpretable web server for predicting subcellular localization. Nucleic Acids Research, 38(suppl_2), W497-W502. doi:10.1093/nar/gkq477 |
es_ES |
dc.description.references |
Carjuzaa, P., Castellión, M., Distéfano, A. J., del Vas, M., & Maldonado, S. (2008). Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos. Protoplasma, 233(1-2), 149-156. doi:10.1007/s00709-008-0300-4 |
es_ES |
dc.description.references |
Close, T. J. (1996). Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum, 97(4), 795-803. doi:10.1111/j.1399-3054.1996.tb00546.x |
es_ES |
dc.description.references |
Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979 |
es_ES |
dc.description.references |
Ferrando, A. (2001). Detection of in vivo protein interactions between Snf1-related kinase subunits with intron-tagged epitope-labelling in plants cells. Nucleic Acids Research, 29(17), 3685-3693. doi:10.1093/nar/29.17.3685 |
es_ES |
dc.description.references |
Goday, A., Jensen, A. B., Culiáñez-Macià, F. A., Mar Albà, M., Figueras, M., Serratosa, J., … Pagès, M. (1994). The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. The Plant Cell, 6(3), 351-360. doi:10.1105/tpc.6.3.351 |
es_ES |
dc.description.references |
Godoy, J. A., Lunar, R., Torres-Schumann, S., Moreno, J., Rodrigo, R. M., & Pintor-Toro, J. A. (1994). Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Molecular Biology, 26(6), 1921-1934. doi:10.1007/bf00019503 |
es_ES |
dc.description.references |
Graether, S. P., & Boddington, K. F. (2014). Disorder and function: a review of the dehydrin protein family. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00576 |
es_ES |
dc.description.references |
Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., & Masmoudi, K. (2011). Plant dehydrins and stress tolerance. Plant Signaling & Behavior, 6(10), 1503-1509. doi:10.4161/psb.6.10.17088 |
es_ES |
dc.description.references |
Hara, M. (2010). The multifunctionality of dehydrins: An overview. Plant Signaling & Behavior, 5(5), 503-508. doi:10.4161/psb.11085 |
es_ES |
dc.description.references |
Hara, M., Fujinaga, M., & Kuboi, T. (2005). Metal binding by citrus dehydrin with histidine-rich domains. Journal of Experimental Botany, 56(420), 2695-2703. doi:10.1093/jxb/eri262 |
es_ES |
dc.description.references |
Hara, M., Kondo, M., & Kato, T. (2013). A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities. Journal of Experimental Botany, 64(6), 1615-1624. doi:10.1093/jxb/ert016 |
es_ES |
dc.description.references |
HARA, M., SHINODA, Y., TANAKA, Y., & KUBOI, T. (2009). DNA binding of citrus dehydrin promoted by zinc ion. Plant, Cell & Environment, 32(5), 532-541. doi:10.1111/j.1365-3040.2009.01947.x |
es_ES |
dc.description.references |
Hara, M., Terashima, S., & Kuboi, T. (2001). Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. Journal of Plant Physiology, 158(10), 1333-1339. doi:10.1078/0176-1617-00600 |
es_ES |
dc.description.references |
Hernández-Sánchez, I. E., Martynowicz, D. M., RodrÃguez-Hernández, A. A., Pérez-Morales, M. B., Graether, S. P., & Jiménez-Bremont, J. F. (2014). A dehydrin-dehydrin interaction: the case of SK3 from Opuntia streptacantha. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00520 |
es_ES |
dc.description.references |
Heyen, B. J., Alsheikh, M. K., Smith, E. A., Torvik, C. F., Seals, D. F., & Randall, S. K. (2002). The Calcium-Binding Activity of a Vacuole-Associated, Dehydrin-Like Protein Is Regulated by Phosphorylation. Plant Physiology, 130(2), 675-687. doi:10.1104/pp.002550 |
es_ES |
dc.description.references |
Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S., & Sarhan, F. (1995). Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. The Plant Journal, 8(4), 583-593. doi:10.1046/j.1365-313x.1995.8040583.x |
es_ES |
dc.description.references |
Hwang, I. S., Choi, D. S., Kim, N. H., Kim, D. S., & Hwang, B. K. (2013). The pepper cysteine/histidine-rich DC1 domain protein CaDC1 binds both RNA and DNA and is required for plant cell death and defense response. New Phytologist, 201(2), 518-530. doi:10.1111/nph.12521 |
es_ES |
dc.description.references |
Jensen, A. B., Goday, A., Figueras, M., Jessop, A. C., & Pagès, M. (1998). Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. The Plant Journal, 13(5), 691-697. doi:10.1046/j.1365-313x.1998.00069.x |
es_ES |
dc.description.references |
Jiménez-Bremont, J. F., Maruri-López, I., Ochoa-Alfaro, A. E., Delgado-Sánchez, P., Bravo, J., & Rodríguez-Kessler, M. (2012). LEA Gene Introns: is the Intron of Dehydrin Genes a Characteristic of the Serine-Segment? Plant Molecular Biology Reporter, 31(1), 128-140. doi:10.1007/s11105-012-0483-x |
es_ES |
dc.description.references |
Koag, M.-C., Wilkens, S., Fenton, R. D., Resnik, J., Vo, E., & Close, T. J. (2009). The K-Segment of Maize DHN1 Mediates Binding to Anionic Phospholipid Vesicles and Concomitant Structural Changes. Plant Physiology, 150(3), 1503-1514. doi:10.1104/pp.109.136697 |
es_ES |
dc.description.references |
Kosugi, S., Hasebe, M., Matsumura, N., Takashima, H., Miyamoto-Sato, E., Tomita, M., & Yanagawa, H. (2008). Six Classes of Nuclear Localization Signals Specific to Different Binding Grooves of Importin α. Journal of Biological Chemistry, 284(1), 478-485. doi:10.1074/jbc.m807017200 |
es_ES |
dc.description.references |
Mueller, J. K., Heckathorn, S. A., & Fernando, D. (2003). Identification of a Chloroplast Dehydrin in Leaves of Mature Plants. International Journal of Plant Sciences, 164(4), 535-542. doi:10.1086/375376 |
es_ES |
dc.description.references |
Nylander, M., Svensson, J., Palva, E. T., & Welin, B. V. (2001). Plant Molecular Biology, 45(3), 263-279. doi:10.1023/a:1006469128280 |
es_ES |
dc.description.references |
Ochoa-Alfaro, A. E., Rodríguez-Kessler, M., Pérez-Morales, M. B., Delgado-Sánchez, P., Cuevas-Velazquez, C. L., Gómez-Anduro, G., & Jiménez-Bremont, J. F. (2011). Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library. Planta, 235(3), 565-578. doi:10.1007/s00425-011-1531-8 |
es_ES |
dc.description.references |
Puhakainen, T., Hess, M. W., Mäkelä, P., Svensson, J., Heino, P., & Palva, E. T. (2004). Overexpression of Multiple Dehydrin Genes Enhances Tolerance to Freezing Stress in Arabidopsis. Plant Molecular Biology, 54(5), 743-753. doi:10.1023/b:plan.0000040903.66496.a4 |
es_ES |
dc.description.references |
Rahman, L. N., McKay, F., Giuliani, M., Quirk, A., Moffatt, B. A., Harauz, G., & Dutcher, J. R. (2013). Interactions of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes at cold and ambient temperatures—Surface morphology and single-molecule force measurements show phase separation, and reveal tertiary and quaternary associations. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828(3), 967-980. doi:10.1016/j.bbamem.2012.11.031 |
es_ES |
dc.description.references |
Ricardi, M. M., Guaimas, F. F., González, R. M., Burrieza, H. P., López-Fernández, M. P., Jares-Erijman, E. A., … Iusem, N. D. (2012). Nuclear Import and Dimerization of Tomato ASR1, a Water Stress-Inducible Protein Exclusive to Plants. PLoS ONE, 7(8), e41008. doi:10.1371/journal.pone.0041008 |
es_ES |
dc.description.references |
Riera, M., Figueras, M., Lopez, C., Goday, A., & Pages, M. (2004). Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proceedings of the National Academy of Sciences, 101(26), 9879-9884. doi:10.1073/pnas.0306154101 |
es_ES |
dc.description.references |
Rorat, T. (2006). Plant dehydrins — Tissue location, structure and function. Cellular and Molecular Biology Letters, 11(4). doi:10.2478/s11658-006-0044-0 |
es_ES |
dc.description.references |
Tompa, P., & Kovacs, D. (2010). Intrinsically disordered chaperones in plants and animalsThis paper is one of a selection of papers published in this special issue entitled «Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases» and has undergone the Journal’s usual peer review process. Biochemistry and Cell Biology, 88(2), 167-174. doi:10.1139/o09-163 |
es_ES |
dc.description.references |
Voinnet, O., Rivas, S., Mestre, P., & Baulcombe, D. (2003). Retracted: An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal, 33(5), 949-956. doi:10.1046/j.1365-313x.2003.01676.x |
es_ES |
dc.description.references |
Wisniewski, M., Webb, R., Balsamo, R., Close, T. J., Yu, X.-M., & Griffith, M. (1999). Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiologia Plantarum, 105(4), 600-608. doi:10.1034/j.1399-3054.1999.105402.x |
es_ES |
dc.description.references |
Xie, C., Zhang, R., Qu, Y., Miao, Z., Zhang, Y., Shen, X., … Dong, J. (2012). Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. New Phytologist, 195(1), 124-135. doi:10.1111/j.1469-8137.2012.04136.x |
es_ES |
dc.description.references |
Xu, J., Zhang, Y. X., Wei, W., Han, L., Guan, Z. Q., Wang, Z., & Chai, T. Y. (2007). BjDHNs Confer Heavy-metal Tolerance in Plants. Molecular Biotechnology, 38(2), 91-98. doi:10.1007/s12033-007-9005-8 |
es_ES |