- -

Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich domain

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich domain

Show simple item record

Files in this item

dc.contributor.author Hernández-Sánchez, IE es_ES
dc.contributor.author Maruri-López, I es_ES
dc.contributor.author Ferrando Monleón, Alejandro Ramón es_ES
dc.contributor.author Carbonell Gisbert, Juan es_ES
dc.contributor.author Graether, SP es_ES
dc.contributor.author Jimenez-Bremont, JF es_ES
dc.date.accessioned 2016-07-22T10:18:48Z
dc.date.available 2016-07-22T10:18:48Z
dc.date.issued 2015-09-07
dc.identifier.issn 1664-462X
dc.identifier.uri http://hdl.handle.net/10251/68027
dc.description.abstract The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1 - Delta His version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization. es_ES
dc.description.sponsorship This work was supported by the CONACYT (Investigacion Ciencia Basica CB-2013-221075) funding to JJ, NSERC Discovery Grant to SG, and funding from the Spanish MICINN/MINECO (BIO2011-23828) to AF and MICINN (BIO2011-23828) to JC. The authors acknowledge to Marisol Gascon Irian from Institut de Biologia Molecular y Celular de Plantas and Nydia Hernandez-Rios from Neurology Institute-UNAM for their technical assistance using the confocal laser-scanning microscope. en_EN
dc.language Inglés es_ES
dc.publisher Frontiers Media es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dehydrin es_ES
dc.subject BiFC es_ES
dc.subject Homodimer es_ES
dc.subject Histidine-rich motif es_ES
dc.subject Nuclear/cytoplasmic localization es_ES
dc.title Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich domain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2015.00702
dc.relation.projectID info:eu-repo/grantAgreement/CONACYT//CB-2013-221075/MX/Caracterización de genes que codifican para una nueva familia de proteínas duf1399 involucradas en el desarrollo y la respuesta al estrés abiótico en arabidopsis thaliana (2014)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2011-23828/ES/CONTROL DE LA DIFERENCIACION DEL XILEMA POR LOS FACTORES DE TRANSCRIPCION AJAX/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Hernández-Sánchez, I.; Maruri-López, I.; Ferrando Monleón, AR.; Carbonell Gisbert, J.; Graether, S.; Jimenez-Bremont, J. (2015). Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich domain. Frontiers in Plant Science. 6(702):1-8. https://doi.org/10.3389/fpls.2015.00702 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3389/fpls.2015.00702 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 702 es_ES
dc.relation.senia 304683 es_ES
dc.identifier.pmcid PMC4561349 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.description.references Alsheikh, M. K., Heyen, B. J., & Randall, S. K. (2003). Ion Binding Properties of the Dehydrin ERD14 Are Dependent upon Phosphorylation. Journal of Biological Chemistry, 278(42), 40882-40889. doi:10.1074/jbc.m307151200 es_ES
dc.description.references Belda-Palazón, B., Ruiz, L., Martí, E., Tárraga, S., Tiburcio, A. F., Culiáñez, F., … Ferrando, A. (2012). Aminopropyltransferases Involved in Polyamine Biosynthesis Localize Preferentially in the Nucleus of Plant Cells. PLoS ONE, 7(10), e46907. doi:10.1371/journal.pone.0046907 es_ES
dc.description.references Briesemeister, S., Rahnenf�hrer, J., & Kohlbacher, O. (2010). YLoc—an interpretable web server for predicting subcellular localization. Nucleic Acids Research, 38(suppl_2), W497-W502. doi:10.1093/nar/gkq477 es_ES
dc.description.references Carjuzaa, P., Castellión, M., Distéfano, A. J., del Vas, M., & Maldonado, S. (2008). Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos. Protoplasma, 233(1-2), 149-156. doi:10.1007/s00709-008-0300-4 es_ES
dc.description.references Close, T. J. (1996). Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum, 97(4), 795-803. doi:10.1111/j.1399-3054.1996.tb00546.x es_ES
dc.description.references Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979 es_ES
dc.description.references Ferrando, A. (2001). Detection of in vivo protein interactions between Snf1-related kinase subunits with intron-tagged epitope-labelling in plants cells. Nucleic Acids Research, 29(17), 3685-3693. doi:10.1093/nar/29.17.3685 es_ES
dc.description.references Goday, A., Jensen, A. B., Culiáñez-Macià, F. A., Mar Albà, M., Figueras, M., Serratosa, J., … Pagès, M. (1994). The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. The Plant Cell, 6(3), 351-360. doi:10.1105/tpc.6.3.351 es_ES
dc.description.references Godoy, J. A., Lunar, R., Torres-Schumann, S., Moreno, J., Rodrigo, R. M., & Pintor-Toro, J. A. (1994). Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Molecular Biology, 26(6), 1921-1934. doi:10.1007/bf00019503 es_ES
dc.description.references Graether, S. P., & Boddington, K. F. (2014). Disorder and function: a review of the dehydrin protein family. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00576 es_ES
dc.description.references Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., & Masmoudi, K. (2011). Plant dehydrins and stress tolerance. Plant Signaling & Behavior, 6(10), 1503-1509. doi:10.4161/psb.6.10.17088 es_ES
dc.description.references Hara, M. (2010). The multifunctionality of dehydrins: An overview. Plant Signaling & Behavior, 5(5), 503-508. doi:10.4161/psb.11085 es_ES
dc.description.references Hara, M., Fujinaga, M., & Kuboi, T. (2005). Metal binding by citrus dehydrin with histidine-rich domains. Journal of Experimental Botany, 56(420), 2695-2703. doi:10.1093/jxb/eri262 es_ES
dc.description.references Hara, M., Kondo, M., & Kato, T. (2013). A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities. Journal of Experimental Botany, 64(6), 1615-1624. doi:10.1093/jxb/ert016 es_ES
dc.description.references HARA, M., SHINODA, Y., TANAKA, Y., & KUBOI, T. (2009). DNA binding of citrus dehydrin promoted by zinc ion. Plant, Cell & Environment, 32(5), 532-541. doi:10.1111/j.1365-3040.2009.01947.x es_ES
dc.description.references Hara, M., Terashima, S., & Kuboi, T. (2001). Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. Journal of Plant Physiology, 158(10), 1333-1339. doi:10.1078/0176-1617-00600 es_ES
dc.description.references Hernández-Sánchez, I. E., Martynowicz, D. M., Rodríguez-Hernández, A. A., Pérez-Morales, M. B., Graether, S. P., & Jiménez-Bremont, J. F. (2014). A dehydrin-dehydrin interaction: the case of SK3 from Opuntia streptacantha. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00520 es_ES
dc.description.references Heyen, B. J., Alsheikh, M. K., Smith, E. A., Torvik, C. F., Seals, D. F., & Randall, S. K. (2002). The Calcium-Binding Activity of a Vacuole-Associated, Dehydrin-Like Protein Is Regulated by Phosphorylation. Plant Physiology, 130(2), 675-687. doi:10.1104/pp.002550 es_ES
dc.description.references Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S., & Sarhan, F. (1995). Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. The Plant Journal, 8(4), 583-593. doi:10.1046/j.1365-313x.1995.8040583.x es_ES
dc.description.references Hwang, I. S., Choi, D. S., Kim, N. H., Kim, D. S., & Hwang, B. K. (2013). The pepper cysteine/histidine-rich DC1 domain protein CaDC1 binds both RNA and DNA and is required for plant cell death and defense response. New Phytologist, 201(2), 518-530. doi:10.1111/nph.12521 es_ES
dc.description.references Jensen, A. B., Goday, A., Figueras, M., Jessop, A. C., & Pagès, M. (1998). Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. The Plant Journal, 13(5), 691-697. doi:10.1046/j.1365-313x.1998.00069.x es_ES
dc.description.references Jiménez-Bremont, J. F., Maruri-López, I., Ochoa-Alfaro, A. E., Delgado-Sánchez, P., Bravo, J., & Rodríguez-Kessler, M. (2012). LEA Gene Introns: is the Intron of Dehydrin Genes a Characteristic of the Serine-Segment? Plant Molecular Biology Reporter, 31(1), 128-140. doi:10.1007/s11105-012-0483-x es_ES
dc.description.references Koag, M.-C., Wilkens, S., Fenton, R. D., Resnik, J., Vo, E., & Close, T. J. (2009). The K-Segment of Maize DHN1 Mediates Binding to Anionic Phospholipid Vesicles and Concomitant Structural Changes. Plant Physiology, 150(3), 1503-1514. doi:10.1104/pp.109.136697 es_ES
dc.description.references Kosugi, S., Hasebe, M., Matsumura, N., Takashima, H., Miyamoto-Sato, E., Tomita, M., & Yanagawa, H. (2008). Six Classes of Nuclear Localization Signals Specific to Different Binding Grooves of Importin α. Journal of Biological Chemistry, 284(1), 478-485. doi:10.1074/jbc.m807017200 es_ES
dc.description.references Mueller, J. K., Heckathorn, S. A., & Fernando, D. (2003). Identification of a Chloroplast Dehydrin in Leaves of Mature Plants. International Journal of Plant Sciences, 164(4), 535-542. doi:10.1086/375376 es_ES
dc.description.references Nylander, M., Svensson, J., Palva, E. T., & Welin, B. V. (2001). Plant Molecular Biology, 45(3), 263-279. doi:10.1023/a:1006469128280 es_ES
dc.description.references Ochoa-Alfaro, A. E., Rodríguez-Kessler, M., Pérez-Morales, M. B., Delgado-Sánchez, P., Cuevas-Velazquez, C. L., Gómez-Anduro, G., & Jiménez-Bremont, J. F. (2011). Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library. Planta, 235(3), 565-578. doi:10.1007/s00425-011-1531-8 es_ES
dc.description.references Puhakainen, T., Hess, M. W., Mäkelä, P., Svensson, J., Heino, P., & Palva, E. T. (2004). Overexpression of Multiple Dehydrin Genes Enhances Tolerance to Freezing Stress in Arabidopsis. Plant Molecular Biology, 54(5), 743-753. doi:10.1023/b:plan.0000040903.66496.a4 es_ES
dc.description.references Rahman, L. N., McKay, F., Giuliani, M., Quirk, A., Moffatt, B. A., Harauz, G., & Dutcher, J. R. (2013). Interactions of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes at cold and ambient temperatures—Surface morphology and single-molecule force measurements show phase separation, and reveal tertiary and quaternary associations. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828(3), 967-980. doi:10.1016/j.bbamem.2012.11.031 es_ES
dc.description.references Ricardi, M. M., Guaimas, F. F., González, R. M., Burrieza, H. P., López-Fernández, M. P., Jares-Erijman, E. A., … Iusem, N. D. (2012). Nuclear Import and Dimerization of Tomato ASR1, a Water Stress-Inducible Protein Exclusive to Plants. PLoS ONE, 7(8), e41008. doi:10.1371/journal.pone.0041008 es_ES
dc.description.references Riera, M., Figueras, M., Lopez, C., Goday, A., & Pages, M. (2004). Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proceedings of the National Academy of Sciences, 101(26), 9879-9884. doi:10.1073/pnas.0306154101 es_ES
dc.description.references Rorat, T. (2006). Plant dehydrins — Tissue location, structure and function. Cellular and Molecular Biology Letters, 11(4). doi:10.2478/s11658-006-0044-0 es_ES
dc.description.references Tompa, P., & Kovacs, D. (2010). Intrinsically disordered chaperones in plants and animalsThis paper is one of a selection of papers published in this special issue entitled «Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases» and has undergone the Journal’s usual peer review process. Biochemistry and Cell Biology, 88(2), 167-174. doi:10.1139/o09-163 es_ES
dc.description.references Voinnet, O., Rivas, S., Mestre, P., & Baulcombe, D. (2003). Retracted: An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal, 33(5), 949-956. doi:10.1046/j.1365-313x.2003.01676.x es_ES
dc.description.references Wisniewski, M., Webb, R., Balsamo, R., Close, T. J., Yu, X.-M., & Griffith, M. (1999). Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiologia Plantarum, 105(4), 600-608. doi:10.1034/j.1399-3054.1999.105402.x es_ES
dc.description.references Xie, C., Zhang, R., Qu, Y., Miao, Z., Zhang, Y., Shen, X., … Dong, J. (2012). Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density. New Phytologist, 195(1), 124-135. doi:10.1111/j.1469-8137.2012.04136.x es_ES
dc.description.references Xu, J., Zhang, Y. X., Wei, W., Han, L., Guan, Z. Q., Wang, Z., & Chai, T. Y. (2007). BjDHNs Confer Heavy-metal Tolerance in Plants. Molecular Biotechnology, 38(2), 91-98. doi:10.1007/s12033-007-9005-8 es_ES


This item appears in the following Collection(s)

Show simple item record