Mostrar el registro sencillo del ítem
dc.contributor.author | Balaguer Ramírez, María | es_ES |
dc.contributor.author | Yoo, C.Y. | es_ES |
dc.contributor.author | Bouwmeester, H.J.M | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.date.accessioned | 2016-07-25T11:02:46Z | |
dc.date.available | 2016-07-25T11:02:46Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0959-9428 | |
dc.identifier.uri | http://hdl.handle.net/10251/68087 | |
dc.description.abstract | Bulk ionic and electronic transport properties and the rate of oxygen surface exchange of Tb-doped ceria have been evaluated as a function of Tb concentration, aiming to assess the potential use of the materials as high-temperature oxygen-transport membranes and oxygen reduction catalysts. The materials were synthesized by the co-precipitation method. Cobalt oxide (2 mol%) was added in order to improve sinterability and conductivity. The materials were studied by means of X-ray diffraction (XRD), temperatureprogrammed desorption (TPD), thermogravimetry (TG), DC-conductivity and UV-vis spectrophotometry. The results indicate that the extent of mixed ionic electronic conductivity is a function of temperature and can be tuned by modifying the Tb- (and Co-doping) concentration. Low Tb-content materials (x ¿ 0.1 and 0.2) are predominant ionic conductors, but the materials with 50 mol% Tb show both p-type electronic and ionic conductivity. The enhanced electronic conduction in Ce0.5Tb0.5O2 d is associated with narrowing of the band gap upon doping ceria with Tb. In addition, the surface chemistry of the samples was investigated by means of X-ray photoelectron spectroscopy (XPS) and pulse isotopic exchange (PIE). The surface exchange rate is found to increase on increasing the level of Tb doping. The highest surface exchange rates in this study are found for materials doped with 50 mol% Tb. | es_ES |
dc.description.sponsorship | Funding from the Spanish Government (BES-2009-015835, ENE2011-24761 and SEV-2012-0267 grants) and Helmholtz Association (MEM-BRAIN Portfolio) is kindly acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Journal of Materials Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.title | Bulk transport and oxygen surface exchange of the mixed ionic-electronic conductor Ce1 xTbxO2-d (x=0.1, 0.2, 0.5) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c3ta11610g | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2009-015835-2/ES/BES-2009-015835-2/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//ENE2011-24761/ES/DESARROLLO DE NUEVOS DISPOSITIVOS IONICOS PARA LA PRODUCCION EFICIENTE Y SOSTENIBLE DE ENERGIA Y PRODUCTOS QUIMICOS%2FCOMBUSTIBLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Balaguer Ramírez, M.; Yoo, C.; Bouwmeester, H.; Serra Alfaro, JM. (2013). Bulk transport and oxygen surface exchange of the mixed ionic-electronic conductor Ce1 xTbxO2-d (x=0.1, 0.2, 0.5). Journal of Materials Chemistry. 1(35):10234-10242. https://doi.org/10.1039/c3ta11610g | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c3ta11610g | es_ES |
dc.description.upvformatpinicio | 10234 | es_ES |
dc.description.upvformatpfin | 10242 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 1 | es_ES |
dc.description.issue | 35 | es_ES |
dc.relation.senia | 246470 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Helmholtz Association of German Research Centers | es_ES |
dc.description.references | Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., & Jensen, A. D. (2010). Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 36(5), 581-625. doi:10.1016/j.pecs.2010.02.001 | es_ES |
dc.description.references | Lobera, M. P., Balaguer, M., Garcia-Fayos, J., & Serra, J. M. (2012). Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 4(12), 2102-2111. doi:10.1002/cctc.201200212 | es_ES |
dc.description.references | Sunarso, J., Baumann, S., Serra, J. M., Meulenberg, W. A., Liu, S., Lin, Y. S., & Diniz da Costa, J. C. (2008). Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 320(1-2), 13-41. doi:10.1016/j.memsci.2008.03.074 | es_ES |
dc.description.references | Fontaine, M.-L., Larring, Y., Norby, T., Grande, T., & Bredesen, R. (2007). Dense ceramic membranes based on ion conducting oxides. Annales de Chimie Science des Matériaux, 32(2), 197-212. doi:10.3166/acsm.32.197-212 | es_ES |
dc.description.references | Serra, J. M., Vert, V. B., Büchler, O., Meulenberg, W. A., & Buchkremer, H. P. (2008). IT-SOFC supported on Mixed Oxygen Ionic-Electronic Conducting Composites. Chemistry of Materials, 20(12), 3867-3875. doi:10.1021/cm702508f | es_ES |
dc.description.references | Leo, A., Smart, S., Liu, S., & Diniz da Costa, J. C. (2011). High performance perovskite hollow fibres for oxygen separation. Journal of Membrane Science, 368(1-2), 64-68. doi:10.1016/j.memsci.2010.11.002 | es_ES |
dc.description.references | Liu, S., Tan, X., Shao, Z., & Diniz da Costa, J. C. (2006). Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic hollow-fiber membranes for oxygen permeation. AIChE Journal, 52(10), 3452-3461. doi:10.1002/aic.10966 | es_ES |
dc.description.references | Baumann, S., Serra, J. M., Lobera, M. P., Escolástico, S., Schulze-Küppers, F., & Meulenberg, W. A. (2011). Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 377(1-2), 198-205. doi:10.1016/j.memsci.2011.04.050 | es_ES |
dc.description.references | Tan, X., & Li, K. (2007). Oxygen production using dense ceramic hollow fiber membrane modules with different operating modes. AIChE Journal, 53(4), 838-845. doi:10.1002/aic.11116 | es_ES |
dc.description.references | ARNOLD, M., WANG, H., & FELDHOFF, A. (2007). Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. Journal of Membrane Science, 293(1-2), 44-52. doi:10.1016/j.memsci.2007.01.032 | es_ES |
dc.description.references | Shao, Z. (2000). Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. Journal of Membrane Science, 172(1-2), 177-188. doi:10.1016/s0376-7388(00)00337-9 | es_ES |
dc.description.references | Leo, A., Liu, S., & Costa, J. C. D. da. (2009). Development of mixed conducting membranes for clean coal energy delivery. International Journal of Greenhouse Gas Control, 3(4), 357-367. doi:10.1016/j.ijggc.2008.11.003 | es_ES |
dc.description.references | Hoon Park, J., Pyo Kim, J., & Hwan Son, S. (2009). Oxygen permeation and stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane according to trace elements and oxygen partial pressure in synthetic air. Energy Procedia, 1(1), 369-374. doi:10.1016/j.egypro.2009.01.050 | es_ES |
dc.description.references | Balaguer, M., Solís, C., & Serra, J. M. (2012). Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. The Journal of Physical Chemistry C, 116(14), 7975-7982. doi:10.1021/jp211594d | es_ES |
dc.description.references | Fagg, D. P., Shaula, A. L., Kharton, V. V., & Frade, J. R. (2007). High oxygen permeability in fluorite-type Ce0.8Pr0.2O2−δ via the use of sintering aids. Journal of Membrane Science, 299(1-2), 1-7. doi:10.1016/j.memsci.2007.04.020 | es_ES |
dc.description.references | Chatzichristodoulou, C., Hendriksen, P. V., Hagen, A., & Grivel, J.-C. (2008). Oxygen Nonstoichiometry and Defect Chemistry Modelling of Ce0.8PrxTb0.2-xO2-δ. ECS Transactions. doi:10.1149/1.3050406 | es_ES |
dc.description.references | Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ+ Co (x= 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w | es_ES |
dc.description.references | Lobera, M. P., Serra, J. M., Foghmoes, S. P., Søgaard, M., & Kaiser, A. (2011). On the use of supported ceria membranes for oxyfuel process/syngas production. Journal of Membrane Science, 385-386, 154-161. doi:10.1016/j.memsci.2011.09.031 | es_ES |
dc.description.references | Luo, H., Efimov, K., Jiang, H., Feldhoff, A., Wang, H., & Caro, J. (2010). CO2-Stable and Cobalt-Free Dual-Phase Membrane for Oxygen Separation. Angewandte Chemie International Edition, 50(3), 759-763. doi:10.1002/anie.201003723 | es_ES |
dc.description.references | Mauvy, F., Bassat, J. M., Boehm, E., Dordor, P., Grenier, J. C., & Loup, J. P. (2004). Chemical oxygen diffusion coefficient measurement by conductivity relaxation—correlation between tracer diffusion coefficient and chemical diffusion coefficient. Journal of the European Ceramic Society, 24(6), 1265-1269. doi:10.1016/s0955-2219(03)00500-4 | es_ES |
dc.description.references | Yashiro, K. (2002). Mass transport properties of Ce0.9Gd0.1O2−δ at the surface and in the bulk. Solid State Ionics, 152-153, 469-476. doi:10.1016/s0167-2738(02)00375-2 | es_ES |
dc.description.references | Haworth, P. F., Smart, S., Serra, J. M., & Diniz da Costa, J. C. (2012). Combined investigation of bulk diffusion and surface exchange parameters of silver catalyst coated yttrium-doped BSCF membranes. Physical Chemistry Chemical Physics, 14(25), 9104. doi:10.1039/c2cp41226h | es_ES |
dc.description.references | Bouwmeester, H. J. M., Song, C., Zhu, J., Yi, J., van Sint Annaland, M., & Boukamp, B. A. (2009). A novel pulse isotopic exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors. Physical Chemistry Chemical Physics, 11(42), 9640. doi:10.1039/b912712g | es_ES |
dc.description.references | Armstrong, E. N., Duncan, K. L., Oh, D. J., Weaver, J. F., & Wachsman, E. D. (2011). Determination of Surface Exchange Coefficients of LSM, LSCF, YSZ, GDC Constituent Materials in Composite SOFC Cathodes. Journal of The Electrochemical Society, 158(5), B492. doi:10.1149/1.3555122 | es_ES |
dc.description.references | Bouwmeester, H. J. M., Den Otter, M. W., & Boukamp, B. A. (2004). Oxygen transport in La0.6Sr0.4Co1−y Fe y O3−δ. Journal of Solid State Electrochemistry, 8(9), 599-605. doi:10.1007/s10008-003-0488-3 | es_ES |
dc.description.references | Kumar, A., Babu, S., Karakoti, A. S., Schulte, A., & Seal, S. (2009). Luminescence Properties of Europium-Doped Cerium Oxide Nanoparticles: Role of Vacancy and Oxidation States. Langmuir, 25(18), 10998-11007. doi:10.1021/la901298q | es_ES |
dc.description.references | Yoo, C.-Y., Boukamp, B. A., & Bouwmeester, H. J. M. (2010). Oxygen surface exchange kinetics of erbia-stabilized bismuth oxide. Journal of Solid State Electrochemistry, 15(2), 231-236. doi:10.1007/s10008-010-1168-8 | es_ES |
dc.description.references | Ye, F., Mori, T., Ou, D. R., Zou, J., & Drennan, J. (2007). Microstructural characterization of terbium-doped ceria. Materials Research Bulletin, 42(5), 943-949. doi:10.1016/j.materresbull.2006.08.007 | es_ES |
dc.description.references | Hong, S. J., & Virkar, A. V. (1995). Lattice Parameters and Densities of Rare-Earth Oxide Doped Ceria Electrolytes. Journal of the American Ceramic Society, 78(2), 433-439. doi:10.1111/j.1151-2916.1995.tb08820.x | es_ES |
dc.description.references | Fagg, D. P., Frade, J. R., Mogensen, M., & Irvine, J. T. S. (2007). Effects of firing schedule on solubility limits and transport properties of ZrO2–TiO2–Y2O3 fluorites. Journal of Solid State Chemistry, 180(8), 2371-2376. doi:10.1016/j.jssc.2007.06.016 | es_ES |
dc.description.references | NICHOLAS, J., & DEJONGHE, L. (2007). Prediction and evaluation of sintering aids for Cerium Gadolinium Oxide. Solid State Ionics, 178(19-20), 1187-1194. doi:10.1016/j.ssi.2007.05.019 | es_ES |
dc.description.references | Fagg, D. P., García-Martin, S., Kharton, V. V., & Frade, J. R. (2009). Transport Properties of Fluorite-Type Ce0.8Pr0.2O2−δ: Optimization via the Use of Cobalt Oxide Sintering Aid. Chemistry of Materials, 21(2), 381-391. doi:10.1021/cm802708a | es_ES |
dc.description.references | Fagg, D. P., Marozau, I. P., Shaula, A. L., Kharton, V. V., & Frade, J. R. (2006). Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8−xPr0.2O2−δ, x=0, 0.15, 0.2. Journal of Solid State Chemistry, 179(11), 3347-3356. doi:10.1016/j.jssc.2006.06.028 | es_ES |
dc.description.references | Duncan, K. L., Wang, Y., Bishop, S. R., Ebrahimi, F., & Wachsman, E. D. (2007). The role of point defects in the physical properties of nonstoichiometric ceria. Journal of Applied Physics, 101(4), 044906. doi:10.1063/1.2559601 | es_ES |
dc.description.references | Tang, C.-W., Wang, C.-B., & Chien, S.-H. (2008). Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochimica Acta, 473(1-2), 68-73. doi:10.1016/j.tca.2008.04.015 | es_ES |
dc.description.references | Tuller, H. L., Bishop, S. R., Chen, D., Kuru, Y., Kim, J.-J., & Stefanik, T. S. (2012). Praseodymium doped ceria: Model mixed ionic electronic conductor with coupled electrical, optical, mechanical and chemical properties. Solid State Ionics, 225, 194-197. doi:10.1016/j.ssi.2012.02.029 | es_ES |
dc.description.references | Schmale, K., Grünebaum, M., Janssen, M., Baumann, S., Schulze-Küppers, F., & Wiemhöfer, H.-D. (2010). Electronic conductivity of Ce0.8Gd0.2−xPrxO2−δ and influence of added CoO. physica status solidi (b), 248(2), 314-322. doi:10.1002/pssb.201046365 | es_ES |
dc.description.references | López, R., & Gómez, R. (2011). Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 61(1), 1-7. doi:10.1007/s10971-011-2582-9 | es_ES |
dc.description.references | MURPHY, A. (2007). Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Solar Energy Materials and Solar Cells, 91(14), 1326-1337. doi:10.1016/j.solmat.2007.05.005 | es_ES |
dc.description.references | Paparazzo, E. (2011). On the curve-fitting of XPS Ce(3d) spectra of cerium oxides. Materials Research Bulletin, 46(2), 323-326. doi:10.1016/j.materresbull.2010.11.009 | es_ES |
dc.description.references | BENJARAM, M. R., GODE, T., & KATTA, L. (2011). Nanosized Unsupported and Alumina-Supported Ceria-Zirconia and Ceria-Terbia Solid Solutions for CO Oxidation. Chinese Journal of Catalysis, 32(5), 800-806. doi:10.1016/s1872-2067(10)60227-6 | es_ES |
dc.description.references | Larachi, F., Pierre, J., Adnot, A., & Bernis, A. (2002). Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Applied Surface Science, 195(1-4), 236-250. doi:10.1016/s0169-4332(02)00559-7 | es_ES |
dc.description.references | Nagpure, I. M., Pitale, S. S., Coetsee, E., Ntwaeaborwa, O. M., Terblans, J. J., & Swart, H. C. (2011). Low voltage electron induced cathodoluminescence degradation and surface characterization of Sr3(PO4)2:Tb phosphor. Applied Surface Science, 257(23), 10147-10155. doi:10.1016/j.apsusc.2011.07.008 | es_ES |
dc.description.references | Blanco, G., Pintado, J. M., Bernal, S., Cauqui, M. A., Corchado, M. P., Galtayries, A., … Drube, W. (2002). Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component. Surface and Interface Analysis, 34(1), 120-124. doi:10.1002/sia.1266 | es_ES |
dc.description.references | Sarma, D. D., & Rao, C. N. R. (1980). XPES studies of oxides of second- and third-row transition metals including rare earths. Journal of Electron Spectroscopy and Related Phenomena, 20(1), 25-45. doi:10.1016/0368-2048(80)85003-1 | es_ES |
dc.description.references | Zsoldos, Z., & Guczi, L. (1992). Structure and catalytic activity of alumina supported platinum-cobalt bimetallic catalysts. 3. Effect of treatment on the interface layer. The Journal of Physical Chemistry, 96(23), 9393-9400. doi:10.1021/j100202a061 | es_ES |
dc.description.references | Aspromonte, S. G., Sastre, Á., Boix, A. V., Cocero, M. J., & Alonso, E. (2012). Cobalt oxide nanoparticles on mesoporous MCM-41 and Al-MCM-41 by supercritical CO2 deposition. Microporous and Mesoporous Materials, 148(1), 53-61. doi:10.1016/j.micromeso.2011.07.014 | es_ES |
dc.description.references | Lane, J. (2000). Oxygen surface exchange on gadolinia doped ceria. Solid State Ionics, 136-137(1-2), 927-932. doi:10.1016/s0167-2738(00)00530-0 | es_ES |