- -

Dielectric Relaxation Processes, Electronic Structure and Band Gap Engineering of MFU-4-type Metal-Organic Frameworks: Towards a Rational Design of Semiconducting Microporous Materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dielectric Relaxation Processes, Electronic Structure and Band Gap Engineering of MFU-4-type Metal-Organic Frameworks: Towards a Rational Design of Semiconducting Microporous Materials

Mostrar el registro completo del ítem

Sippel, P.; Denysenko, D.; Loidl, A.; Lunkenheimer, P.; Sastre Navarro, GI.; Volkmer, D. (2014). Dielectric Relaxation Processes, Electronic Structure and Band Gap Engineering of MFU-4-type Metal-Organic Frameworks: Towards a Rational Design of Semiconducting Microporous Materials. Advanced Functional Materials. 24(25):3885-3896. https://doi.org/10.1002/adfm.201400083

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68255

Ficheros en el ítem

Metadatos del ítem

Título: Dielectric Relaxation Processes, Electronic Structure and Band Gap Engineering of MFU-4-type Metal-Organic Frameworks: Towards a Rational Design of Semiconducting Microporous Materials
Autor: Sippel, P. Denysenko, D. Loidl, A. Lunkenheimer, P. Sastre Navarro, German Ignacio Volkmer, Dirk
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
The electronic structures and band gaps of MFU-4-type metal-organic frameworks can be systematically engineered leading to a family of isostructural microporous solids. Electrical properties of the microcrystalline samples ...[+]
Derechos de uso: Cerrado
Fuente:
Advanced Functional Materials. (issn: 1616-301X )
DOI: 10.1002/adfm.201400083
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/adfm.201400083
Código del Proyecto:
info:eu-repo/grantAgreement/DFG//SPP 1362/
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
Agradecimientos:
Financial Support by the DFG (Priority Program SPP 1362 "Porous Metal-organic Frameworks") is gratefully acknowledged. This work was partly supported by the BMBF via ENREKON. Sastre thanks the Spanish government for the ...[+]
Tipo: Artículo

References

Allendorf, M. D., Schwartzberg, A., Stavila, V., & Talin, A. A. (2011). A Roadmap to Implementing Metal-Organic Frameworks in Electronic Devices: Challenges and Critical Directions. Chemistry - A European Journal, 17(41), 11372-11388. doi:10.1002/chem.201101595

Silva, C. G., Corma, A., & García, H. (2010). Metal–organic frameworks as semiconductors. Journal of Materials Chemistry, 20(16), 3141. doi:10.1039/b924937k

Li, S.-L., & Xu, Q. (2013). Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science, 6(6), 1656. doi:10.1039/c3ee40507a [+]
Allendorf, M. D., Schwartzberg, A., Stavila, V., & Talin, A. A. (2011). A Roadmap to Implementing Metal-Organic Frameworks in Electronic Devices: Challenges and Critical Directions. Chemistry - A European Journal, 17(41), 11372-11388. doi:10.1002/chem.201101595

Silva, C. G., Corma, A., & García, H. (2010). Metal–organic frameworks as semiconductors. Journal of Materials Chemistry, 20(16), 3141. doi:10.1039/b924937k

Li, S.-L., & Xu, Q. (2013). Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science, 6(6), 1656. doi:10.1039/c3ee40507a

Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248

Civalleri, B., Napoli, F., Noël, Y., Roetti, C., & Dovesi, R. (2006). Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study. CrystEngComm, 8(5), 364-371. doi:10.1039/b603150c

Yang, L.-M., Vajeeston, P., Ravindran, P., Fjellvåg, H., & Tilset, M. (2010). Theoretical Investigations on the Chemical Bonding, Electronic Structure, And Optical Properties of the Metal−Organic Framework MOF-5. Inorganic Chemistry, 49(22), 10283-10290. doi:10.1021/ic100694w

Ji, M., Lan, X., Han, Z., Hao, C., & Qiu, J. (2012). Luminescent Properties of Metal–Organic Framework MOF-5: Relativistic Time-Dependent Density Functional Theory Investigations. Inorganic Chemistry, 51(22), 12389-12394. doi:10.1021/ic301771b

Yang, L.-M., Ravindran, P., Vajeeston, P., Svelle, S., & Tilset, M. (2013). A quantum mechanically guided view of Cd-MOF-5 from formation energy, chemical bonding, electronic structure, and optical properties. Microporous and Mesoporous Materials, 175, 50-58. doi:10.1016/j.micromeso.2013.03.020

Choi, J. H., Choi, Y. J., Lee, J. W., Shin, W. H., & Kang, J. K. (2009). Tunability of electronic band gaps from semiconducting to metallic states via tailoring Zn ions in MOFs with Co ions. Phys. Chem. Chem. Phys., 11(4), 628-631. doi:10.1039/b816668d

Fuentes-Cabrera, M., Nicholson, D. M., Sumpter, B. G., & Widom, M. (2005). Electronic structure and properties of isoreticular metal-organic frameworks: The case of M-IRMOF1 (M=Zn, Cd, Be, Mg, and Ca). The Journal of Chemical Physics, 123(12), 124713. doi:10.1063/1.2037587

Choi, J. H., Jeon, H. J., Choi, K. M., & Kang, J. K. (2012). Metal–organic frameworks for visible light absorption via anion substitution. Journal of Materials Chemistry, 22(20), 10144. doi:10.1039/c2jm16245h

Kuc, A., Enyashin, A., & Seifert, G. (2007). Metal−Organic Frameworks:  Structural, Energetic, Electronic, and Mechanical Properties. The Journal of Physical Chemistry B, 111(28), 8179-8186. doi:10.1021/jp072085x

Lin, C.-K., Zhao, D., Gao, W.-Y., Yang, Z., Ye, J., Xu, T., … Liu, D.-J. (2012). Tunability of Band Gaps in Metal–Organic Frameworks. Inorganic Chemistry, 51(16), 9039-9044. doi:10.1021/ic301189m

Yang, L.-M., Ravindran, P., Vajeeston, P., & Tilset, M. (2012). Ab initio investigations on the crystal structure, formation enthalpy, electronic structure, chemical bonding, and optical properties of experimentally synthesized isoreticular metal–organic framework-10 and its analogues: M-IRMOF-10 (M = Zn, Cd, Be, Mg, Ca, Sr and Ba). RSC Adv., 2(4), 1618-1631. doi:10.1039/c1ra00187f

Yang, L.-M., Ravindran, P., Vajeeston, P., & Tilset, M. (2012). Formation of an intermediate band in isoreticular metal–organic framework-993 (IRMOF-993) and metal-substituted analogues M-IRMOF-993. Journal of Materials Chemistry, 22(32), 16324. doi:10.1039/c2jm31360j

Yang, L.-M., Ravindran, P., & Tilset, M. (2013). Solid-State Structure and Calculated Electronic Structure, Formation Energy, Chemical Bonding, and Optical Properties of Zn4O(FMA)3 and Its Heavier Congener Cd4O(FMA)3. Inorganic Chemistry, 52(8), 4217-4228. doi:10.1021/ic301928a

Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., … Lamberti, C. (2011). Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 23(7), 1700-1718. doi:10.1021/cm1022882

Takaishi, S., Hosoda, M., Kajiwara, T., Miyasaka, H., Yamashita, M., Nakanishi, Y., … Kitagawa, H. (2009). Electroconductive Porous Coordination Polymer Cu[Cu(pdt)2] Composed of Donor and Acceptor Building Units. Inorganic Chemistry, 48(19), 9048-9050. doi:10.1021/ic802117q

Kobayashi, Y., Jacobs, B., Allendorf, M. D., & Long, J. R. (2010). Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal−Organic Framework. Chemistry of Materials, 22(14), 4120-4122. doi:10.1021/cm101238m

Sun, L., Miyakai, T., Seki, S., & Dincă, M. (2013). Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): A Microporous Metal–Organic Framework with Infinite (−Mn–S−)∞ Chains and High Intrinsic Charge Mobility. Journal of the American Chemical Society, 135(22), 8185-8188. doi:10.1021/ja4037516

Patwardhan, S., Kocherzhenko, A. A., Grozema, F. C., & Siebbeles, L. D. A. (2011). Delocalization and Mobility of Charge Carriers in Covalent Organic Frameworks. The Journal of Physical Chemistry C, 115(23), 11768-11772. doi:10.1021/jp202399u

Grozema, F. C., & Siebbeles, L. D. A. (2008). Mechanism of charge transport in self-organizing organic materials. International Reviews in Physical Chemistry, 27(1), 87-138. doi:10.1080/01442350701782776

Biswas, S., Grzywa, M., Nayek, H. P., Dehnen, S., Senkovska, I., Kaskel, S., & Volkmer, D. (2009). A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. Dalton Transactions, (33), 6487. doi:10.1039/b904280f

Denysenko, D., Werner, T., Grzywa, M., Puls, A., Hagen, V., Eickerling, G., … Volkmer, D. (2012). Reversible gas-phase redox processes catalyzed by Co-exchanged MFU-4l(arge). Chem. Commun., 48(9), 1236-1238. doi:10.1039/c2cc16235k

Denysenko, D., Grzywa, M., Tonigold, M., Streppel, B., Krkljus, I., Hirscher, M., … Volkmer, D. (2011). Elucidating Gating Effects for Hydrogen Sorption in MFU-4-Type Triazolate-Based Metal-Organic Frameworks Featuring Different Pore Sizes. Chemistry - A European Journal, 17(6), 1837-1848. doi:10.1002/chem.201001872

Biswas, S., Tonigold, M., Speldrich, M., Kögerler, P., Weil, M., & Volkmer, D. (2010). Syntheses and Magnetostructural Investigations on Kuratowski-Type Homo- and Heteropentanuclear Coordination Compounds [MZn4Cl4(L)6] (MII= Zn, Fe, Co, Ni, or Cu; L = 5,6-Dimethyl-1,2,3-benzotriazolate) Represented by the NonplanarK3,3Graph. Inorganic Chemistry, 49(16), 7424-7434. doi:10.1021/ic100749k

Winston, E. B., Lowell, P. J., Vacek, J., Chocholoušová, J., Michl, J., & Price, J. C. (2008). Dipolar molecular rotors in the metal–organic framework crystal IRMOF-2. Physical Chemistry Chemical Physics, 10(34), 5188. doi:10.1039/b808104b

Devautour-Vinot, S., Maurin, G., Henn, F., Serre, C., & Férey, G. (2010). Water and ethanol desorption in the flexible metal organic frameworks, MIL-53 (Cr, Fe), investigated by complex impedance spectrocopy and density functional theory calculations. Physical Chemistry Chemical Physics, 12(39), 12478. doi:10.1039/c0cp00142b

Frunza, S., Schönhals, A., Frunza, L., Ganea, P., Kosslick, H., Harloff, J., & Schulz, A. (2010). Molecular Relaxation Processes in a MOF-5 Structure Revealed by Broadband Dielectric Spectroscopy: Signature of Phenylene Ring Fluctuations. The Journal of Physical Chemistry B, 114(40), 12840-12846. doi:10.1021/jp1071617

Devautour-Vinot, S., Maurin, G., Serre, C., Horcajada, P., Paula da Cunha, D., Guillerm, V., … Martineau, C. (2012). Structure and Dynamics of the Functionalized MOF Type UiO-66(Zr): NMR and Dielectric Relaxation Spectroscopies Coupled with DFT Calculations. Chemistry of Materials, 24(11), 2168-2177. doi:10.1021/cm300863c

Zhang, W., Ye, H.-Y., Graf, R., Spiess, H. W., Yao, Y.-F., Zhu, R.-Q., & Xiong, R.-G. (2013). Tunable and Switchable Dielectric Constant in an Amphidynamic Crystal. Journal of the American Chemical Society, 135(14), 5230-5233. doi:10.1021/ja3110335

Cairns, A. B., & Goodwin, A. L. (2013). Structural disorder in molecular framework materials. Chemical Society Reviews, 42(12), 4881. doi:10.1039/c3cs35524a

Long, A. R. (1982). Frequency-dependent loss in amorphous semiconductors. Advances in Physics, 31(5), 553-637. doi:10.1080/00018738200101418

Elliott, S. R. (1987). A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Advances in Physics, 36(2), 135-217. doi:10.1080/00018738700101971

ε″ν [20] ε″ T T

Lunkenheimer, P., Schneider, U., Brand, R., & Loid, A. (2000). Glassy dynamics. Contemporary Physics, 41(1), 15-36. doi:10.1080/001075100181259

Lunkenheimer, P., Krohns, S., Riegg, S., Ebbinghaus, S. G., Reller, A., & Loidl, A. (2009). Colossal dielectric constants in transition-metal oxides. The European Physical Journal Special Topics, 180(1), 61-89. doi:10.1140/epjst/e2010-01212-5

Brand, R., Lunkenheimer, P., & Loidl, A. (2002). Relaxation dynamics in plastic crystals. The Journal of Chemical Physics, 116(23), 10386-10401. doi:10.1063/1.1477186

Fulcher, G. S. (1925). ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES. Journal of the American Ceramic Society, 8(6), 339-355. doi:10.1111/j.1151-2916.1925.tb16731.x

Tammann, G., & Hesse, W. (1926). Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie, 156(1), 245-257. doi:10.1002/zaac.19261560121

Angell, C. A. (1988). Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. Journal of Non-Crystalline Solids, 102(1-3), 205-221. doi:10.1016/0022-3093(88)90133-0

Ediger, M. D., Angell, C. A., & Nagel, S. R. (1996). Supercooled Liquids and Glasses. The Journal of Physical Chemistry, 100(31), 13200-13212. doi:10.1021/jp953538d

Debenedetti, P. G., & Stillinger, F. H. (2001). Supercooled liquids and the glass transition. Nature, 410(6825), 259-267. doi:10.1038/35065704

Riniker, S., Kunz, A.-P. E., & van Gunsteren, W. F. (2011). On the Calculation of the Dielectric Permittivity and Relaxation of Molecular Models in the Liquid Phase. Journal of Chemical Theory and Computation, 7(5), 1469-1475. doi:10.1021/ct100610v

dc 1/4 dc T

Sze, S. M., & Ng, K. K. (2006). Physics of Semiconductor Devices. doi:10.1002/0470068329

Tauc, J. (1970). Absorption edge and internal electric fields in amorphous semiconductors. Materials Research Bulletin, 5(8), 721-729. doi:10.1016/0025-5408(70)90112-1

Wood, D. L., & Tauc, J. (1972). Weak Absorption Tails in Amorphous Semiconductors. Physical Review B, 5(8), 3144-3151. doi:10.1103/physrevb.5.3144

Liu, Y.-Y., Grzywa, M., Tonigold, M., Sastre, G., Schüttrigkeit, T., Leeson, N. S., & Volkmer, D. (2011). Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII = Zn or Ru) featuring long-lived excited electronic states. Dalton Transactions, 40(22), 5926. doi:10.1039/c0dt01750g

Schneider, U., Lunkenheimer, P., Pimenov, A., Brand, R., & Loidl, A. (2001). Wide range dielectric spectroscopy on glass-forming materials: An experimental overview. Ferroelectrics, 249(1), 89-98. doi:10.1080/00150190108214970

Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for open-shell transition metals. Physical Review B, 48(17), 13115-13118. doi:10.1103/physrevb.48.13115

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169

Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865

Seidl, A., Görling, A., Vogl, P., Majewski, J. A., & Levy, M. (1996). Generalized Kohn-Sham schemes and the band-gap problem. Physical Review B, 53(7), 3764-3774. doi:10.1103/physrevb.53.3764

Brothers, E. N., Izmaylov, A. F., Normand, J. O., Barone, V., & Scuseria, G. E. (2008). Accurate solid-state band gaps via screened hybrid electronic structure calculations. The Journal of Chemical Physics, 129(1), 011102. doi:10.1063/1.2955460

Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a

Heyd, J., Peralta, J. E., Scuseria, G. E., & Martin, R. L. (2005). Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. The Journal of Chemical Physics, 123(17), 174101. doi:10.1063/1.2085170

Tao, J., Perdew, J. P., Staroverov, V. N., & Scuseria, G. E. (2003). Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Physical Review Letters, 91(14). doi:10.1103/physrevlett.91.146401

S. I. Gorelsky AOMix: Program for Molecular Orbital Analysis http://www.sg-chem.net/ 2013

Gorelsky, S. I., & Lever, A. B. P. (2001). Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. Journal of Organometallic Chemistry, 635(1-2), 187-196. doi:10.1016/s0022-328x(01)01079-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem