- -

Localization algorithms for multilateration (MLAT) systems in airport surface surveillance

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Localization algorithms for multilateration (MLAT) systems in airport surface surveillance

Show simple item record

Files in this item

dc.contributor.author Mantilla Gaviria, Iván Antonio es_ES
dc.contributor.author Leonardi, M. es_ES
dc.contributor.author Galati, Gaspare es_ES
dc.contributor.author Balbastre Tejedor, Juan Vicente es_ES
dc.date.accessioned 2016-07-27T07:24:24Z
dc.date.available 2016-07-27T07:24:24Z
dc.date.issued 2015-10
dc.identifier.issn 1863-1703
dc.identifier.uri http://hdl.handle.net/10251/68258
dc.description.abstract We present a general scheme for analyzing the performance of a generic localization algorithm for multilateration (MLAT) systems (or for other distributed sensor, passive localization technology). MLAT systems are used for airport surface surveillance and are based on time difference of arrival measurements of Mode S signals (replies and 1,090 MHz extended squitter, or 1090ES). In the paper, we propose to consider a localization algorithm as composed of two components: a data model and a numerical method, both being properly defined and described. In this way, the performance of the localization algorithm can be related to the proper combination of statistical and numerical performances. We present and review a set of data models and numerical methods that can describe most localization algorithms. We also select a set of existing localization algorithms that can be considered as the most relevant, and we describe them under the proposed classification. We show that the performance of any localization algorithm has two components, i.e., a statistical one and a numerical one. The statistical performance is related to providing unbiased and minimum variance solutions, while the numerical one is related to ensuring the convergence of the solution. Furthermore, we show that a robust localization (i.e., statistically and numerically efficient) strategy, for airport surface surveillance, has to be composed of two specific kind of algorithms. Finally, an accuracy analysis, by using real data, is performed for the analyzed algorithms; some general guidelines are drawn and conclusions are provided. es_ES
dc.description.sponsorship Mr. Ivan A. Mantilla-Gaviria has been supported by a FPU scholarship (AP2008-03300) from the Spanish Ministry of Education. Moreover, the authors are grateful to ERA A.S. who supplied the recording of TDOA measurements. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation FPU scholarship from the Spanish Ministry of Education AP2008-03300 es_ES
dc.relation.ispartof Signal, Image and Video Processing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Localization algorithms es_ES
dc.subject Multilateration es_ES
dc.subject Time difference of arrival es_ES
dc.subject Airport surface surveillance es_ES
dc.subject Air traffic control es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Localization algorithms for multilateration (MLAT) systems in airport surface surveillance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11760-013-0608-1
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.description.bibliographicCitation Mantilla Gaviria, IA.; Leonardi, M.; Galati, G.; Balbastre Tejedor, JV. (2015). Localization algorithms for multilateration (MLAT) systems in airport surface surveillance. Signal, Image and Video Processing. 9(7):1549-1558. doi:10.1007/s11760-013-0608-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11760-013-0608-1 es_ES
dc.description.upvformatpinicio 1549 es_ES
dc.description.upvformatpfin 1558 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 298694 es_ES
dc.relation.references EUROCAE-WG-41: ED-117, MOPS for Mode S multilateration systems for use in advanced surface movement guidance and control systems (A-SMGCS). In: The European Organisation for Civil Aviation Equipment (EUROCAE) (November 2003) es_ES
dc.relation.references EUROCAE-WG-70: ED-142, technical specification for wide area multilateration (WAM) systems. In: The European Organisation for Civil Aviation Equipment (EUROCAE) (September 2010) es_ES
dc.relation.references Galati, G., Genderen, P.V.: Proceedings Book of the Tyrrhenian International Workshop on Digital Communications, Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV’11), Capri, Italy (2011) es_ES
dc.relation.references Galati, G., Genderen, P.V.: Proceedings Book of the Tyrrhenian International Workshop on Digital Communications, Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV’08), Capri, Italy (2008) es_ES
dc.relation.references Galati, G., Zellweger, A.: Proceedings Book of the ATM 2002 Advanced Workshop. Capri, Italy (2002) es_ES
dc.relation.references Hahn, W.R., Tretter, S.A.: Optimum processing for delay-vector estimation in passive signal arrays. IEEE Trans. Inf. Theory IT–19(5), 608–614 (1973) es_ES
dc.relation.references Torrieri, D.J.: Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst. AES–20, 183–198 (1984) es_ES
dc.relation.references Levanon, N.: Lowest GDOP in 2-D scenarios. IEE Proc. Radar Sonar Navig. 147(3), 149–155 (2000) es_ES
dc.relation.references Galati, G., Leonardi, M., Mantilla-Gaviria, I.A., Tosti, M.: Lower bounds of accuracy for enhanced mode-s distributed sensor networks. IET Radar Sonar Navig. 6(3), 190–201 (2012). doi: 10.1049/iet-rsn.2011.0197 es_ES
dc.relation.references Smith, J.O., Abel, J.S.: Closed-form least-squares source location estimation from range-difference measurements. IEEE Trans. Acoust. Speech Signal Process. ASSP–35(12), 1661–1669 (1987) es_ES
dc.relation.references Mantilla-Gaviria, I.A., Leonardi, M., Galati, G., Balbastre-Tejedor, J.V., Reyes, E.D.L.: Efficient location strategy for airport surveillance using Mode-S multilateration systems. Int. J. Microw. Wireless Technol. 4(2), 209–216 (2012). doi: 10.1017/S1759078712000104 es_ES
dc.relation.references Romero, L., Mason, J.: Evaluation of direct and iterative methods for overdetermined systems of TOA geolocation equations. IEEE Trans. Aerosp. Electron. Syst. 47(2), 1213–1229 (2011) es_ES
dc.relation.references Yang, K., An, J., Bu, X., Sun, G.: Constrained total least-squares location algorithm using time-difference-of-arrival measurements. IEEE Trans. Veh. Technol. 59(3), 1558–1562 (2010) es_ES
dc.relation.references Weng, Y., Xiao, W., Xie, L.: Total least squares method for robust source localization in sensor networks using TDOA measurements. Int. J. Distrib. Sens. Netw. 2011 (Article ID 172902) (2011). doi: 10.1155/2011/172902 es_ES
dc.relation.references Mantilla-Gaviria, I.A., Leonardi, M., Galati, G., Balbastre-T, J.V., Reyes, E.D.L.: Improvement of multilateration (MLAT) accuracy and convergence for airport surveillance. In: Tyrrhenian International Workshop on Digital Communications—Enhanced Surveillance of Aircraft and Vehicles (ESAV’11), Capri, Italy (September 12–14, 2011) es_ES
dc.relation.references Mantilla-Gaviria, I.A., Leonardi, M., Balbastre-Tejedor, J.V., Reyes, Edl: On the application of singular value decomposition and Tikhonov regularization to ill-posed problems in hyperbolic passive location. Math. Comput. Model. 57(7–8), 1999–2008 (2013). doi: 10.1016/j.mcm.2012.03.004 es_ES
dc.relation.references El-Rabbany, A.: Introduction to GPS: The Global Positioning System, 2nd edn. Artech House, Boston, USA (2006) es_ES
dc.relation.references Trees, HLv: Detection, Estimation and Modulation Theory, Part I. Wiley, New York (2001) es_ES
dc.relation.references Foy, W.H.: Position-location solution by Taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst. AES–12(2), 187–194 (1976) es_ES
dc.relation.references Smith, J.O., Abel, J.S.: The spherical interpolation method of source localization. IEEE J. Ocean. Eng. OE–12(1), 246–252 (1987) es_ES
dc.relation.references Friedlander, B.: A passive localization algorithm and its accuracy analysis. IEEE J. Ocean. Eng. OE–12(1), 234–245 (1987). doi: 10.1109/JOE.1987.1145216 es_ES
dc.relation.references Schau, H.C., Robinson, A.Z.: Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Trans. Acoust. Speech Signal Process. ASSP–35(8), 1223–1225 (1987) es_ES
dc.relation.references Chan, Y.T., Ho, K.C.: A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 42(8), 1905–1915 (1994) es_ES
dc.relation.references Schmidt, R.O.: A new approach to geometry of range difference location. IEEE Trans. Aerosp. Electron. Syst. AES–8(6), 821–835 (1972) es_ES
dc.relation.references Geyer, M., Daskalakis, A.: Solving passive multilateration equations using Bancroft’s algorithm. In: Digital Avionics Systems Conference, pp. F41/41–F41/48, Bellevue, WA, USA (1998) es_ES
dc.relation.references Wikipedia: http://en.wikipedia.org/wiki/Multilateration es_ES
dc.relation.references Bancroft, S.: An algebraic solution of the GPS equations. IEEE Trans. Aerosp. Electron. Syst. AES–21(7), 56–59 (1985) es_ES
dc.relation.references Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996) es_ES
dc.relation.references Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation. Wiley, New York (2001) es_ES


This item appears in the following Collection(s)

Show simple item record