Mostrar el registro sencillo del ítem
dc.contributor.author | Barber Sanchís, Federico | es_ES |
dc.contributor.author | Salido Gregorio, Miguel Angel | es_ES |
dc.date.accessioned | 2016-07-28T10:25:19Z | |
dc.date.available | 2016-07-28T10:25:19Z | |
dc.date.issued | 2015-09 | |
dc.identifier.issn | 0219-1377 | |
dc.identifier.uri | http://hdl.handle.net/10251/68385 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/s10115-014-0778-3 | es_ES |
dc.description.abstract | Many real-world problems in Artificial Intelligence (AI) as well as in other areas of computer science and engineering can be efficiently modeled and solved using constraint programming techniques. In many real-world scenarios the problem is partially known, imprecise and dynamic such that some effects of actions are undesired and/or several un-foreseen incidences or changes can occur. Whereas expressivity, efficiency and optimality have been the typical goals in the area, there are several issues regarding robustness that have a clear relevance in dynamic Constraint Satisfaction Problems (CSP). However, there is still no clear and common definition of robustness-related concepts in CSPs. In this paper, we propose two clearly differentiated definitions for robustness and stability in CSP solutions. We also introduce the concepts of recoverability and reliability, which arise in temporal CSPs. All these definitions are based on related well-known concepts, which are addressed in engineering and other related areas. | es_ES |
dc.description.sponsorship | This work has been partially supported by the research project TIN2013-46511-C2-1 (MINECO, Spain). We would also thank the reviewers for their efforts and helpful comments. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Knowledge and Information Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Constraint satisfaction problems | es_ES |
dc.subject | Robustness | es_ES |
dc.subject | Stability | es_ES |
dc.subject | Dynamic CSPs | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Robustness, stability, recoverability, and reliability in constraint satisfaction problems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10115-014-0778-3 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2013-46511-C2-1-P/ES/TECNICAS INTELIGENTES PARA LA OBTENCION DE SOLUCIONES ROBUSTAS Y EFICIENTES ENERGETICAMENTE EN SCHEDULING: APLICACION AL TRANSPORTE::UPV/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Barber Sanchís, F.; Salido Gregorio, MA. (2015). Robustness, stability, recoverability, and reliability in constraint satisfaction problems. Knowledge and Information Systems. 44(3):719-734. https://doi.org/10.1007/s10115-014-0778-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://link.springer.com/article/10.1007/s10115-014-0778-3 | es_ES |
dc.description.upvformatpinicio | 719 | es_ES |
dc.description.upvformatpfin | 734 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 44 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 269360 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Abril M, Barber F, Ingolotti L, Salido MA, Tormos P, Lova A (2008) An assessment of railway capacity. Transp Res Part E 44(5):774–806 | es_ES |
dc.description.references | Barber F (2000) Reasoning on intervals and point-based disjunctive metric constraints in temporal contexts. J Artif Intell Res 12:35–86 | es_ES |
dc.description.references | Bartak R, Salido MA (2011) Constraint satisfaction for planning and scheduling problems. Constraints 16(3):223–227 | es_ES |
dc.description.references | Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53 | es_ES |
dc.description.references | Climent L, Wallace R, Salido M, Barber F (2013) Modeling robustness in CSPS as weighted CSPS. In: Integration of AI and OR techniques in constraint programming for combinatorial optimization problems CPAIOR 2013, pp 44–60 | es_ES |
dc.description.references | Climent L, Wallace R, Salido M, Barber F (2014) Robustness and stability in constraint programming under dynamism and uncertainty. J Artif Intell Res 49(1):49–78 | es_ES |
dc.description.references | Dechter R (1991) Temporal constraint network. Artif Intell 49:61–295 | es_ES |
dc.description.references | Hazewinkel M (2002) Encyclopaedia of mathematics. Springer, New York | es_ES |
dc.description.references | Hebrard E (2007) Robust solutions for constraint satisfaction and optimisation under uncertainty. PhD thesis, University of New South Wales | es_ES |
dc.description.references | Hebrard E, Hnich B, Walsh T (2004) Super solutions in constraint programming. In: Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR-04), pp 157–172 | es_ES |
dc.description.references | Jen E (2003) Stable or robust? What’s the difference? Complexity 8(3):12–18 | es_ES |
dc.description.references | Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3(137) | es_ES |
dc.description.references | Liebchen C, Lbbecke M, Mhring R, Stiller S (2009) The concept of recoverable robustness, linear programming recovery, and railway applications. In: LNCS, vol 5868 | es_ES |
dc.description.references | Papapetrou P, Kollios G, Sclaroff S, Gunopulos D (2009) Mining frequent arrangements of temporal intervals. Knowl Inf Syst 21:133–171 | es_ES |
dc.description.references | Rizk A, Batt G, Fages F, Solima S (2009) A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 25(12):168–179 | es_ES |
dc.description.references | Rossi F, van Beek P, Walsh T (2006) Handbook of constraint programming. Elsevier, New York | es_ES |
dc.description.references | Roy B (2010) Robustness in operational research and decision aiding: a multi-faceted issue. Eur J Oper Res 200:629–638 | es_ES |
dc.description.references | Szathmary E (2006) A robust approach. Nature 439:19–20 | es_ES |
dc.description.references | Verfaillie G, Schiex T (1994) Solution reuse in dynamic constraint satisfaction problems. In: Proceedings of the 12th national conference on artificial intelligence (AAAI-94), pp 307–312 | es_ES |
dc.description.references | Wallace R, Grimes D, Freuder E (2009) Solving dynamic constraint satisfaction problems by identifying stable features. In: Proceedings of international joint conferences on artificial intelligence (IJCAI-09), pp 621–627 | es_ES |
dc.description.references | Wang D, Tse Q, Zhou Y (2011) A decentralized search engine for dynamic web communities. Knowl Inf Syst 26(1):105–125 | es_ES |
dc.description.references | Wiggins S (1990) Introduction to applied nonlinear dynamical systems and chaos. Springer, New York | es_ES |
dc.description.references | Zhou Y, Croft W (2008) Measuring ranked list robustness for query performance prediction. Knowl Inf Syst 16:155–171 | es_ES |