B. R. Nag, Physics of Quantum Well Devices (Kluver Academic, Dordrecht, 2001) p. 312.
Roblin, P., & Rohdin, H. (2002). High-speed heterostructure devices. doi:10.1017/cbo9780511754593
Kolbas, R. M., & Holonyak, N. (1984). Man‐made quantum wells: A new perspective on the finite square‐well problem. American Journal of Physics, 52(5), 431-437. doi:10.1119/1.13649
[+]
B. R. Nag, Physics of Quantum Well Devices (Kluver Academic, Dordrecht, 2001) p. 312.
Roblin, P., & Rohdin, H. (2002). High-speed heterostructure devices. doi:10.1017/cbo9780511754593
Kolbas, R. M., & Holonyak, N. (1984). Man‐made quantum wells: A new perspective on the finite square‐well problem. American Journal of Physics, 52(5), 431-437. doi:10.1119/1.13649
Mazurczyk, R. (1999). Semiconductor Superlattices. Chaos, Solitons & Fractals, 10(12), 1971-1982. doi:10.1016/s0960-0779(98)00245-8
Axel, F., & Terauchi, H. (1991). High-resolution x-ray-diffraction spectra of Thue-Morse GaAs-AlAs heterostructures: Towards a novel description of disorder. Physical Review Letters, 66(17), 2223-2226. doi:10.1103/physrevlett.66.2223
Järrendahl, K., Dulea, M., Birch, J., & Sundgren, J.-E. (1995). X-ray diffraction from amorphous Ge/Si Cantor superlattices. Physical Review B, 51(12), 7621-7631. doi:10.1103/physrevb.51.7621
Sánchez-Soto, L. L., Monzón, J. J., Barriuso, A. G., & Cariñena, J. F. (2012). The transfer matrix: A geometrical perspective. Physics Reports, 513(4), 191-227. doi:10.1016/j.physrep.2011.10.002
KAYA, T. (2012). CORRELATED REDUCED TRANSFER MATRIX APPROACH FOR ISING MODEL. International Journal of Modern Physics B, 26(14), 1250085. doi:10.1142/s0217979212500853
KAYA, T. (2012). IMPROVED MEAN-FIELD TRANSFER MATRIX MODEL FOR HYPERCUBIC ISING SYSTEMS. Modern Physics Letters B, 26(17), 1250111. doi:10.1142/s0217984912501114
Monsoriu, J. A., Villatoro, F. R., Marín, M. J., Pérez, J., & Monreal, L. (2006). Quantum fractal superlattices. American Journal of Physics, 74(9), 831-836. doi:10.1119/1.2209242
Monsoriu, J. A., Villatoro, F. R., Marín, M. J., Urchueguía, J. F., & Córdoba, P. F. de. (2005). A transfer matrix method for the analysis of fractal quantum potentials. European Journal of Physics, 26(4), 603-610. doi:10.1088/0143-0807/26/4/005
Villatoro, F. R., & Monsoriu, J. A. (2008). Tunneling in quantum superlattices with variable lacunarity. Physics Letters A, 372(21), 3801-3807. doi:10.1016/j.physleta.2008.03.002
CASTRO-PALACIO, J. C., VILLATORO, F. R., MENDOZA-YERO, O., VELÁZQUEZ-ABAD, L., & MONSORIU, J. A. (2012). SELF-SIMILAR BEHAVIOR IN SEMICONDUCTOR SUPERLATTICES. Fractals, 20(01), 89-95. doi:10.1142/s0218348x12500089
Fleming, A. J. (2002). Plant mathematics and Fibonacci’s flowers. Nature, 418(6899), 723-723. doi:10.1038/418723a
Mahler, L., Tredicucci, A., Beltram, F., Walther, C., Faist, J., Beere, H. E., … Wiersma, D. S. (2010). Quasi-periodic distributed feedback laser. Nature Photonics, 4(3), 165-169. doi:10.1038/nphoton.2009.285
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976) p. 848.
Calatayud, A., Ferrando, V., Remón, L., Furlan, W. D., & Monsoriu, J. A. (2013). Twin axial vortices generated by Fibonacci lenses. Optics Express, 21(8), 10234. doi:10.1364/oe.21.010234
Albuquerque, E. L., & Cottam, M. G. (2003). Theory of elementary excitations in quasiperiodic structures. Physics Reports, 376(4-5), 225-337. doi:10.1016/s0370-1573(02)00559-8
Maciá, E. (2012). Exploiting aperiodic designs in nanophotonic devices. Reports on Progress in Physics, 75(3), 036502. doi:10.1088/0034-4885/75/3/036502
Maciá, E. (2005). The role of aperiodic order in science and technology. Reports on Progress in Physics, 69(2), 397-441. doi:10.1088/0034-4885/69/2/r03
Hsueh, W. J., Chang, C. H., Cheng, Y. H., & Wun, S. J. (2012). Effective Bragg conditions in a one-dimensional quasicrystal. Optics Express, 20(24), 26618. doi:10.1364/oe.20.026618
[-]