- -

Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Li, Zhibin es_ES
dc.contributor.author Martínez Triguero, Luis Joaquín es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author YU, JIHONG es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2016-09-01T11:24:58Z
dc.date.available 2016-09-01T11:24:58Z
dc.date.issued 2013
dc.identifier.issn 1463-9076
dc.identifier.uri http://hdl.handle.net/10251/68532
dc.description.abstract [EN] Nano-SAPO-34 molecular sieves synthesized in a microwave environment with 20 nm crystal size showed a longer lifetime than SAPO-34 prepared by the conventional hydrothermal method in the reaction of methanol to olefins. It has been found that silicon distribution strongly affects the lifetime and selectivity. Thus, silicon at the border of the silicon islands gives a higher lifetime and lower C2/C3 ratio. This change in activity and selectivity is better explained in terms of different silicon distribution than by preferential diffusion of ethene through the 8MR pores and agrees with transition-state selectivity. The effects of equilibrium of olefins and deactivation by coke were isolated, showing that after full formation of the hydrocarbon pool, selectivity is independent of deactivation by coke. es_ES
dc.description.sponsorship Financial support by the Spanish MINECO (MAT2012-37160, CSD2009-00050-CONSOLIDER/INGENIO 2010), and Generalitat Valenciana by the PROMETEO program is acknowledged. Z. Li acknowledges China Scholarship Council (CSC) for a fellowship. J. Yu thanks the support by the State Basic Research Project of China (Grant no. 2011CB808703) and the National Natural Science Foundation of China. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject HYDROCARBON POOL MECHANISM es_ES
dc.subject MESOPOROUS SSZ-13 ZEOLITE es_ES
dc.subject MAS NMR-SPECTROSCOPY es_ES
dc.subject SOLID-STATE NMR es_ES
dc.subject MTO-REACTION es_ES
dc.subject CATALYTIC PERFORMANCE es_ES
dc.subject SILICOALUMINOPHOSPHATES H-SAPO-34 es_ES
dc.subject THERMAL-STABILITY es_ES
dc.subject COKE DEPOSITION es_ES
dc.subject TEMPLATE METHOD es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3cp52247d
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NKRDPC//2011CB808703/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-37160/ES/SINTESIS DE NUEVOS MATERIALES MICROPOROSOS BASADOS EN EL USO DE ?ESPONJAS DE PROTONES? COMO AGENTES DIRECTORES DE ESTRUCTURA (ADES)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Li, Z.; Martínez Triguero, LJ.; Concepción Heydorn, P.; Yu, J.; Corma Canós, A. (2013). Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution. Physical Chemistry Chemical Physics. 15(35):14670-14680. https://doi.org/10.1039/c3cp52247d es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1039/c3cp52247d es_ES
dc.description.upvformatpinicio 14670 es_ES
dc.description.upvformatpfin 14680 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 35 es_ES
dc.relation.senia 258146 es_ES
dc.identifier.eissn 1463-9084
dc.contributor.funder National Key Research and Development Program of China es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Bjørgen, M., Joensen, F., Spangsberg Holm, M., Olsbye, U., Lillerud, K.-P., & Svelle, S. (2008). Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A: General, 345(1), 43-50. doi:10.1016/j.apcata.2008.04.020 es_ES
dc.description.references Vennestrøm, P. N. R., Grill, M., Kustova, M., Egeblad, K., Lundegaard, L. F., Joensen, F., … Beato, P. (2011). Hierarchical ZSM-5 prepared by guanidinium base treatment: Understanding microstructural characteristics and impact on MTG and NH3-SCR catalytic reactions. Catalysis Today, 168(1), 71-79. doi:10.1016/j.cattod.2011.03.045 es_ES
dc.description.references Barbera, K., Bonino, F., Bordiga, S., Janssens, T. V. W., & Beato, P. (2011). Structure–deactivation relationship for ZSM-5 catalysts governed by framework defects. Journal of Catalysis, 280(2), 196-205. doi:10.1016/j.jcat.2011.03.016 es_ES
dc.description.references Na, K., Choi, M., & Ryoo, R. (2013). Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous and Mesoporous Materials, 166, 3-19. doi:10.1016/j.micromeso.2012.03.054 es_ES
dc.description.references Jacobsen, C. J. H., Madsen, C., Houzvicka, J., Schmidt, I., & Carlsson, A. (2000). Mesoporous Zeolite Single Crystals. Journal of the American Chemical Society, 122(29), 7116-7117. doi:10.1021/ja000744c es_ES
dc.description.references Kim, J., Choi, M., & Ryoo, R. (2010). Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. Journal of Catalysis, 269(1), 219-228. doi:10.1016/j.jcat.2009.11.009 es_ES
dc.description.references Firoozi, M., Baghalha, M., & Asadi, M. (2009). The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catalysis Communications, 10(12), 1582-1585. doi:10.1016/j.catcom.2009.04.021 es_ES
dc.description.references Rownaghi, A. A., & Hedlund, J. (2011). Methanol to Gasoline-Range Hydrocarbons: Influence of Nanocrystal Size and Mesoporosity on Catalytic Performance and Product Distribution of ZSM-5. Industrial & Engineering Chemistry Research, 50(21), 11872-11878. doi:10.1021/ie201549j es_ES
dc.description.references Sommer, L., Mores, D., Svelle, S., Stöcker, M., Weckhuysen, B. M., & Olsbye, U. (2010). Mesopore formation in zeolite H-SSZ-13 by desilication with NaOH. Microporous and Mesoporous Materials, 132(3), 384-394. doi:10.1016/j.micromeso.2010.03.017 es_ES
dc.description.references Wu, L., Degirmenci, V., Magusin, P. C. M. M., Szyja, B. M., & Hensen, E. J. M. (2012). Dual template synthesis of a highly mesoporous SSZ-13 zeolite with improved stability in the methanol-to-olefins reaction. Chemical Communications, 48(76), 9492. doi:10.1039/c2cc33994c es_ES
dc.description.references Wu, L., Degirmenci, V., Magusin, P. C. M. M., Lousberg, N. J. H. G. M., & Hensen, E. J. M. (2013). Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction. Journal of Catalysis, 298, 27-40. doi:10.1016/j.jcat.2012.10.029 es_ES
dc.description.references Schmidt, F., Paasch, S., Brunner, E., & Kaskel, S. (2012). Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous and Mesoporous Materials, 164, 214-221. doi:10.1016/j.micromeso.2012.04.045 es_ES
dc.description.references Hirota, Y., Murata, K., Tanaka, S., Nishiyama, N., Egashira, Y., & Ueyama, K. (2010). Dry gel conversion synthesis of SAPO-34 nanocrystals. Materials Chemistry and Physics, 123(2-3), 507-509. doi:10.1016/j.matchemphys.2010.05.005 es_ES
dc.description.references Lee, K. Y., Chae, H.-J., Jeong, S.-Y., & Seo, G. (2009). Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions. Applied Catalysis A: General, 369(1-2), 60-66. doi:10.1016/j.apcata.2009.08.033 es_ES
dc.description.references Lee, Y.-J., Baek, S.-C., & Jun, K.-W. (2007). Methanol conversion on SAPO-34 catalysts prepared by mixed template method. Applied Catalysis A: General, 329, 130-136. doi:10.1016/j.apcata.2007.06.034 es_ES
dc.description.references Wang, P., Lv, A., Hu, J., Xu, J., & Lu, G. (2012). The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction. Microporous and Mesoporous Materials, 152, 178-184. doi:10.1016/j.micromeso.2011.11.037 es_ES
dc.description.references Álvaro-Muñoz, T., Márquez-Álvarez, C., & Sastre, E. (2012). Use of different templates on SAPO-34 synthesis: Effect on the acidity and catalytic activity in the MTO reaction. Catalysis Today, 179(1), 27-34. doi:10.1016/j.cattod.2011.07.038 es_ES
dc.description.references Lin, S., Li, J., Sharma, R. P., Yu, J., & Xu, R. (2010). Fabrication of SAPO-34 Crystals with Different Morphologies by Microwave Heating. Topics in Catalysis, 53(19-20), 1304-1310. doi:10.1007/s11244-010-9588-3 es_ES
dc.description.references Shalmani, F. M., Halladj, R., & Askari, S. (2012). Effect of contributing factors on microwave-assisted hydrothermal synthesis of nanosized SAPO-34 molecular sieves. Powder Technology, 221, 395-402. doi:10.1016/j.powtec.2012.01.036 es_ES
dc.description.references Yang, G., Wei, Y., Xu, S., Chen, J., Li, J., Liu, Z., … Xu, R. (2013). Nanosize-Enhanced Lifetime of SAPO-34 Catalysts in Methanol-to-Olefin Reactions. The Journal of Physical Chemistry C, 117(16), 8214-8222. doi:10.1021/jp312857p es_ES
dc.description.references Buchholz, A., Wang, W., Arnold, A., Xu, M., & Hunger, M. (2003). Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy. Microporous and Mesoporous Materials, 57(2), 157-168. doi:10.1016/s1387-1811(02)00562-0 es_ES
dc.description.references Buchholz, A., Wang, W., Xu, M., Arnold, A., & Hunger, M. (2002). Thermal stability and dehydroxylation of Brønsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31, and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy. Microporous and Mesoporous Materials, 56(3), 267-278. doi:10.1016/s1387-1811(02)00491-2 es_ES
dc.description.references Blackwell, C. S., & Patton, R. L. (1988). Solid-state NMR of silicoaluminophosphate molecular sieves and aluminophosphate materials. The Journal of Physical Chemistry, 92(13), 3965-3970. doi:10.1021/j100324a055 es_ES
dc.description.references Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., & Flanigen, E. M. (1984). Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 106(20), 6092-6093. doi:10.1021/ja00332a063 es_ES
dc.description.references Vomscheid, R., Briend, M., Peltre, M. J., Man, P. P., & Barthomeuf, D. (1994). The Role of the Template in Directing the Si Distribution in SAPO Zeolites. The Journal of Physical Chemistry, 98(38), 9614-9618. doi:10.1021/j100089a041 es_ES
dc.description.references Martins, G. A. V., Berlier, G., Coluccia, S., Pastore, H. O., Superti, G. B., Gatti, G., & Marchese, L. (2007). Revisiting the Nature of the Acidity in Chabazite-Related Silicoaluminophosphates:  Combined FTIR and29Si MAS NMR Study. The Journal of Physical Chemistry C, 111(1), 330-339. doi:10.1021/jp063921q es_ES
dc.description.references Wei, Y., Zhang, D., Xu, L., Chang, F., He, Y., Meng, S., … Liu, Z. (2008). Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins. Catalysis Today, 131(1-4), 262-269. doi:10.1016/j.cattod.2007.10.055 es_ES
dc.description.references Briend, M., Vomscheid, R., Peltre, M. J., Man, P. P., & Barthomeuf, D. (1995). Influence of the Choice of the Template on the Short- and Long-Term Stability of SAPO-34 Zeolite. The Journal of Physical Chemistry, 99(20), 8270-8276. doi:10.1021/j100020a060 es_ES
dc.description.references Suzuki, K., Nishio, T., Katada, N., Sastre, G., & Niwa, M. (2011). Ammonia IRMS-TPD measurements on Brønsted acidity of proton-formed SAPO-34. Phys. Chem. Chem. Phys., 13(8), 3311-3318. doi:10.1039/c0cp00961j es_ES
dc.description.references Katada, N., Nouno, K., Lee, J. K., Shin, J., Hong, S. B., & Niwa, M. (2011). Acidic Properties of Cage-Based, Small-Pore Zeolites with Different Framework Topologies and Their Silicoaluminophosphate Analogues. The Journal of Physical Chemistry C, 115(45), 22505-22513. doi:10.1021/jp207894n es_ES
dc.description.references Sastre, G., Lewis, D. W., & Catlow, C. R. A. (1997). Modeling of Silicon Substitution in SAPO-5 and SAPO-34 Molecular Sieves. The Journal of Physical Chemistry B, 101(27), 5249-5262. doi:10.1021/jp963736k es_ES
dc.description.references Barthomeuf, D. (1994). Topological model for the compared acidity of SAPOs and SiAl zeolites. Zeolites, 14(6), 394-401. doi:10.1016/0144-2449(94)90164-3 es_ES
dc.description.references Buchholz, A., Wang, W., Xu, M., Arnold, A., & Hunger, M. (2004). Sequential Steps of Ammoniation of the Microporous Silicoaluminophosphates H-SAPO-34 and H-SAPO-37 Investigated by In Situ CF MAS NMR Spectroscopy. The Journal of Physical Chemistry B, 108(10), 3107-3113. doi:10.1021/jp030249d es_ES
dc.description.references Watanabe, Y., Koiwai, A., Takeuchi, H., Hyodo, S. A., & Noda, S. (1993). Multinuclear NMR Studies on the Thermal Stability of SAPO-34. Journal of Catalysis, 143(2), 430-436. doi:10.1006/jcat.1993.1287 es_ES
dc.description.references BUSCA, G. (1991). FT-113 study of the surface properties of the spinels NiAl2O4 and CoAl2O4 in relation to those of transitional aluminas. Journal of Catalysis, 131(1), 167-177. doi:10.1016/0021-9517(91)90333-y es_ES
dc.description.references Busca, G., Lorenzelli, V., Ramis, G., & Willey, R. J. (1993). Surface sites on spinel-type and corundum-type metal oxide powders. Langmuir, 9(6), 1492-1499. doi:10.1021/la00030a012 es_ES
dc.description.references Eilertsen, E. A., Arstad, B., Svelle, S., & Lillerud, K. P. (2012). Single parameter synthesis of high silica CHA zeolites from fluoride media. Microporous and Mesoporous Materials, 153, 94-99. doi:10.1016/j.micromeso.2011.12.026 es_ES
dc.description.references Bordiga, S., Regli, L., Cocina, D., Lamberti, C., Bjørgen, M., & Lillerud, K. P. (2005). Assessing the Acidity of High Silica Chabazite H−SSZ-13 by FTIR Using CO as Molecular Probe:  Comparison with H−SAPO-34. The Journal of Physical Chemistry B, 109(7), 2779-2784. doi:10.1021/jp045498w es_ES
dc.description.references Bleken, F., Bjørgen, M., Palumbo, L., Bordiga, S., Svelle, S., Lillerud, K.-P., & Olsbye, U. (2009). The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology. Topics in Catalysis, 52(3), 218-228. doi:10.1007/s11244-008-9158-0 es_ES
dc.description.references Janssens, T. V. W. (2009). A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts. Journal of Catalysis, 264(2), 130-137. doi:10.1016/j.jcat.2009.03.004 es_ES
dc.description.references Chen, D., Rebo, H. P., Moljord, K., & Holmen, A. (1997). Influence of Coke Deposition on Selectivity in Zeolite Catalysis. Industrial & Engineering Chemistry Research, 36(9), 3473-3479. doi:10.1021/ie9700223 es_ES
dc.description.references Sedran, U., Mahay, A., & De Lasa, H. I. (1990). Modelling methanol conversion to hydrocarbons: revision and testing of a simple kinetic model. Chemical Engineering Science, 45(5), 1161-1165. doi:10.1016/0009-2509(90)87109-6 es_ES
dc.description.references Chen, D., Rebo, H. P., Moljord, K., & Holmen, A. (1997). The role of coke deposition in the conversion of methanol to olefins over SAPO-34. Studies in Surface Science and Catalysis, 159-166. doi:10.1016/s0167-2991(97)80151-6 es_ES
dc.description.references Chen, D., Rebo, H. P., Moljord, K., & Holmen, A. (1999). Methanol Conversion to Light Olefins over SAPO-34. Sorption, Diffusion, and Catalytic Reactions. Industrial & Engineering Chemistry Research, 38(11), 4241-4249. doi:10.1021/ie9807046 es_ES
dc.description.references Svelle, S., Sommer, L., Barbera, K., Vennestrøm, P. N. R., Olsbye, U., Lillerud, K. P., … Beato, P. (2011). How defects and crystal morphology control the effects of desilication. Catalysis Today, 168(1), 38-47. doi:10.1016/j.cattod.2010.12.013 es_ES
dc.description.references Sazama, P., Wichterlova, B., Dedecek, J., Tvaruzkova, Z., Musilova, Z., Palumbo, L., … Gonsiorova, O. (2011). FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons. Microporous and Mesoporous Materials, 143(1), 87-96. doi:10.1016/j.micromeso.2011.02.013 es_ES
dc.description.references Chen, D., Grønvold, A., Moljord, K., & Holmen, A. (2007). Methanol Conversion to Light Olefins over SAPO-34:  Reaction Network and Deactivation Kinetics. Industrial & Engineering Chemistry Research, 46(12), 4116-4123. doi:10.1021/ie0610748 es_ES
dc.description.references Dahl, I. M., Mostad, H., Akporiaye, D., & Wendelbo, R. (1999). Structural and chemical influences on the MTO reaction: a comparison of chabazite and SAPO-34 as MTO catalysts. Microporous and Mesoporous Materials, 29(1-2), 185-190. doi:10.1016/s1387-1811(98)00330-8 es_ES
dc.description.references Hereijgers, B. P. C., Bleken, F., Nilsen, M. H., Svelle, S., Lillerud, K.-P., Bjørgen, M., … Olsbye, U. (2009). Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts. Journal of Catalysis, 264(1), 77-87. doi:10.1016/j.jcat.2009.03.009 es_ES
dc.description.references Song, W., Fu, H., & Haw, J. F. (2001). Supramolecular Origins of Product Selectivity for Methanol-to-Olefin Catalysis on HSAPO-34. Journal of the American Chemical Society, 123(20), 4749-4754. doi:10.1021/ja0041167 es_ES
dc.description.references Arstad, B., Nicholas, J. B., & Haw, J. F. (2004). Theoretical Study of the Methylbenzene Side-Chain Hydrocarbon Pool Mechanism in Methanol to Olefin Catalysis. Journal of the American Chemical Society, 126(9), 2991-3001. doi:10.1021/ja035923j es_ES
dc.description.references Zhou, H., Wang, Y., Wei, F., Wang, D., & Wang, Z. (2008). Kinetics of the reactions of the light alkenes over SAPO-34. Applied Catalysis A: General, 348(1), 135-141. doi:10.1016/j.apcata.2008.06.033 es_ES
dc.description.references Chen, D., Moljord, K., & Holmen, A. (2012). A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous and Mesoporous Materials, 164, 239-250. doi:10.1016/j.micromeso.2012.06.046 es_ES
dc.description.references Wang, C.-M., Wang, Y.-D., & Xie, Z.-K. (2013). Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: Are olefins themselves the dominating hydrocarbon pool species? Journal of Catalysis, 301, 8-19. doi:10.1016/j.jcat.2013.01.024 es_ES
dc.description.references Wang, C.-M., Wang, Y.-D., Xie, Z.-K., & Liu, Z.-P. (2009). Methanol to Olefin Conversion on HSAPO-34 Zeolite from Periodic Density Functional Theory Calculations: A Complete Cycle of Side Chain Hydrocarbon Pool Mechanism. The Journal of Physical Chemistry C, 113(11), 4584-4591. doi:10.1021/jp810350x es_ES
dc.description.references Hemelsoet, K., Van der Mynsbrugge, J., De Wispelaere, K., Waroquier, M., & Van Speybroeck, V. (2013). Unraveling the Reaction Mechanisms Governing Methanol-to-Olefins Catalysis by Theory and Experiment. ChemPhysChem, 14(8), 1526-1545. doi:10.1002/cphc.201201023 es_ES
dc.description.references Westgård Erichsen, M., Svelle, S., & Olsbye, U. (2013). The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction. Catalysis Today, 215, 216-223. doi:10.1016/j.cattod.2013.03.017 es_ES
dc.description.references Kim, S. J., Jang, H.-G., Lee, J. K., Min, H.-K., Hong, S. B., & Seo, G. (2011). Direct observation of hexamethylbenzenium radical cations generated during zeolite methanol-to-olefin catalysis: an ESR study. Chemical Communications, 47(33), 9498. doi:10.1039/c1cc13153b es_ES
dc.description.references Alberty, R. A., & Gehrig, C. A. (1985). Standard Chemical Thermodynamic Properties of Alkene Isomer Groups. Journal of Physical and Chemical Reference Data, 14(3), 803-820. doi:10.1063/1.555737 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem