Mostrar el registro sencillo del ítem
dc.contributor.author | Li, Zhibin | es_ES |
dc.contributor.author | Martínez Triguero, Luis Joaquín | es_ES |
dc.contributor.author | Concepción Heydorn, Patricia | es_ES |
dc.contributor.author | YU, JIHONG | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2016-09-01T11:24:58Z | |
dc.date.available | 2016-09-01T11:24:58Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1463-9076 | |
dc.identifier.uri | http://hdl.handle.net/10251/68532 | |
dc.description.abstract | [EN] Nano-SAPO-34 molecular sieves synthesized in a microwave environment with 20 nm crystal size showed a longer lifetime than SAPO-34 prepared by the conventional hydrothermal method in the reaction of methanol to olefins. It has been found that silicon distribution strongly affects the lifetime and selectivity. Thus, silicon at the border of the silicon islands gives a higher lifetime and lower C2/C3 ratio. This change in activity and selectivity is better explained in terms of different silicon distribution than by preferential diffusion of ethene through the 8MR pores and agrees with transition-state selectivity. The effects of equilibrium of olefins and deactivation by coke were isolated, showing that after full formation of the hydrocarbon pool, selectivity is independent of deactivation by coke. | es_ES |
dc.description.sponsorship | Financial support by the Spanish MINECO (MAT2012-37160, CSD2009-00050-CONSOLIDER/INGENIO 2010), and Generalitat Valenciana by the PROMETEO program is acknowledged. Z. Li acknowledges China Scholarship Council (CSC) for a fellowship. J. Yu thanks the support by the State Basic Research Project of China (Grant no. 2011CB808703) and the National Natural Science Foundation of China. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Physical Chemistry Chemical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | HYDROCARBON POOL MECHANISM | es_ES |
dc.subject | MESOPOROUS SSZ-13 ZEOLITE | es_ES |
dc.subject | MAS NMR-SPECTROSCOPY | es_ES |
dc.subject | SOLID-STATE NMR | es_ES |
dc.subject | MTO-REACTION | es_ES |
dc.subject | CATALYTIC PERFORMANCE | es_ES |
dc.subject | SILICOALUMINOPHOSPHATES H-SAPO-34 | es_ES |
dc.subject | THERMAL-STABILITY | es_ES |
dc.subject | COKE DEPOSITION | es_ES |
dc.subject | TEMPLATE METHOD | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c3cp52247d | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NKRDPC//2011CB808703/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-37160/ES/SINTESIS DE NUEVOS MATERIALES MICROPOROSOS BASADOS EN EL USO DE ?ESPONJAS DE PROTONES? COMO AGENTES DIRECTORES DE ESTRUCTURA (ADES)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Li, Z.; Martínez Triguero, LJ.; Concepción Heydorn, P.; Yu, J.; Corma Canós, A. (2013). Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution. Physical Chemistry Chemical Physics. 15(35):14670-14680. https://doi.org/10.1039/c3cp52247d | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1039/c3cp52247d | es_ES |
dc.description.upvformatpinicio | 14670 | es_ES |
dc.description.upvformatpfin | 14680 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 35 | es_ES |
dc.relation.senia | 258146 | es_ES |
dc.identifier.eissn | 1463-9084 | |
dc.contributor.funder | National Key Research and Development Program of China | es_ES |
dc.contributor.funder | China Scholarship Council | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Bjørgen, M., Joensen, F., Spangsberg Holm, M., Olsbye, U., Lillerud, K.-P., & Svelle, S. (2008). Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A: General, 345(1), 43-50. doi:10.1016/j.apcata.2008.04.020 | es_ES |
dc.description.references | Vennestrøm, P. N. R., Grill, M., Kustova, M., Egeblad, K., Lundegaard, L. F., Joensen, F., … Beato, P. (2011). Hierarchical ZSM-5 prepared by guanidinium base treatment: Understanding microstructural characteristics and impact on MTG and NH3-SCR catalytic reactions. Catalysis Today, 168(1), 71-79. doi:10.1016/j.cattod.2011.03.045 | es_ES |
dc.description.references | Barbera, K., Bonino, F., Bordiga, S., Janssens, T. V. W., & Beato, P. (2011). Structure–deactivation relationship for ZSM-5 catalysts governed by framework defects. Journal of Catalysis, 280(2), 196-205. doi:10.1016/j.jcat.2011.03.016 | es_ES |
dc.description.references | Na, K., Choi, M., & Ryoo, R. (2013). Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous and Mesoporous Materials, 166, 3-19. doi:10.1016/j.micromeso.2012.03.054 | es_ES |
dc.description.references | Jacobsen, C. J. H., Madsen, C., Houzvicka, J., Schmidt, I., & Carlsson, A. (2000). Mesoporous Zeolite Single Crystals. Journal of the American Chemical Society, 122(29), 7116-7117. doi:10.1021/ja000744c | es_ES |
dc.description.references | Kim, J., Choi, M., & Ryoo, R. (2010). Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. Journal of Catalysis, 269(1), 219-228. doi:10.1016/j.jcat.2009.11.009 | es_ES |
dc.description.references | Firoozi, M., Baghalha, M., & Asadi, M. (2009). The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catalysis Communications, 10(12), 1582-1585. doi:10.1016/j.catcom.2009.04.021 | es_ES |
dc.description.references | Rownaghi, A. A., & Hedlund, J. (2011). Methanol to Gasoline-Range Hydrocarbons: Influence of Nanocrystal Size and Mesoporosity on Catalytic Performance and Product Distribution of ZSM-5. Industrial & Engineering Chemistry Research, 50(21), 11872-11878. doi:10.1021/ie201549j | es_ES |
dc.description.references | Sommer, L., Mores, D., Svelle, S., Stöcker, M., Weckhuysen, B. M., & Olsbye, U. (2010). Mesopore formation in zeolite H-SSZ-13 by desilication with NaOH. Microporous and Mesoporous Materials, 132(3), 384-394. doi:10.1016/j.micromeso.2010.03.017 | es_ES |
dc.description.references | Wu, L., Degirmenci, V., Magusin, P. C. M. M., Szyja, B. M., & Hensen, E. J. M. (2012). Dual template synthesis of a highly mesoporous SSZ-13 zeolite with improved stability in the methanol-to-olefins reaction. Chemical Communications, 48(76), 9492. doi:10.1039/c2cc33994c | es_ES |
dc.description.references | Wu, L., Degirmenci, V., Magusin, P. C. M. M., Lousberg, N. J. H. G. M., & Hensen, E. J. M. (2013). Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction. Journal of Catalysis, 298, 27-40. doi:10.1016/j.jcat.2012.10.029 | es_ES |
dc.description.references | Schmidt, F., Paasch, S., Brunner, E., & Kaskel, S. (2012). Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous and Mesoporous Materials, 164, 214-221. doi:10.1016/j.micromeso.2012.04.045 | es_ES |
dc.description.references | Hirota, Y., Murata, K., Tanaka, S., Nishiyama, N., Egashira, Y., & Ueyama, K. (2010). Dry gel conversion synthesis of SAPO-34 nanocrystals. Materials Chemistry and Physics, 123(2-3), 507-509. doi:10.1016/j.matchemphys.2010.05.005 | es_ES |
dc.description.references | Lee, K. Y., Chae, H.-J., Jeong, S.-Y., & Seo, G. (2009). Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions. Applied Catalysis A: General, 369(1-2), 60-66. doi:10.1016/j.apcata.2009.08.033 | es_ES |
dc.description.references | Lee, Y.-J., Baek, S.-C., & Jun, K.-W. (2007). Methanol conversion on SAPO-34 catalysts prepared by mixed template method. Applied Catalysis A: General, 329, 130-136. doi:10.1016/j.apcata.2007.06.034 | es_ES |
dc.description.references | Wang, P., Lv, A., Hu, J., Xu, J., & Lu, G. (2012). The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction. Microporous and Mesoporous Materials, 152, 178-184. doi:10.1016/j.micromeso.2011.11.037 | es_ES |
dc.description.references | Álvaro-Muñoz, T., Márquez-Álvarez, C., & Sastre, E. (2012). Use of different templates on SAPO-34 synthesis: Effect on the acidity and catalytic activity in the MTO reaction. Catalysis Today, 179(1), 27-34. doi:10.1016/j.cattod.2011.07.038 | es_ES |
dc.description.references | Lin, S., Li, J., Sharma, R. P., Yu, J., & Xu, R. (2010). Fabrication of SAPO-34 Crystals with Different Morphologies by Microwave Heating. Topics in Catalysis, 53(19-20), 1304-1310. doi:10.1007/s11244-010-9588-3 | es_ES |
dc.description.references | Shalmani, F. M., Halladj, R., & Askari, S. (2012). Effect of contributing factors on microwave-assisted hydrothermal synthesis of nanosized SAPO-34 molecular sieves. Powder Technology, 221, 395-402. doi:10.1016/j.powtec.2012.01.036 | es_ES |
dc.description.references | Yang, G., Wei, Y., Xu, S., Chen, J., Li, J., Liu, Z., … Xu, R. (2013). Nanosize-Enhanced Lifetime of SAPO-34 Catalysts in Methanol-to-Olefin Reactions. The Journal of Physical Chemistry C, 117(16), 8214-8222. doi:10.1021/jp312857p | es_ES |
dc.description.references | Buchholz, A., Wang, W., Arnold, A., Xu, M., & Hunger, M. (2003). Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy. Microporous and Mesoporous Materials, 57(2), 157-168. doi:10.1016/s1387-1811(02)00562-0 | es_ES |
dc.description.references | Buchholz, A., Wang, W., Xu, M., Arnold, A., & Hunger, M. (2002). Thermal stability and dehydroxylation of Brønsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31, and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy. Microporous and Mesoporous Materials, 56(3), 267-278. doi:10.1016/s1387-1811(02)00491-2 | es_ES |
dc.description.references | Blackwell, C. S., & Patton, R. L. (1988). Solid-state NMR of silicoaluminophosphate molecular sieves and aluminophosphate materials. The Journal of Physical Chemistry, 92(13), 3965-3970. doi:10.1021/j100324a055 | es_ES |
dc.description.references | Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., & Flanigen, E. M. (1984). Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 106(20), 6092-6093. doi:10.1021/ja00332a063 | es_ES |
dc.description.references | Vomscheid, R., Briend, M., Peltre, M. J., Man, P. P., & Barthomeuf, D. (1994). The Role of the Template in Directing the Si Distribution in SAPO Zeolites. The Journal of Physical Chemistry, 98(38), 9614-9618. doi:10.1021/j100089a041 | es_ES |
dc.description.references | Martins, G. A. V., Berlier, G., Coluccia, S., Pastore, H. O., Superti, G. B., Gatti, G., & Marchese, L. (2007). Revisiting the Nature of the Acidity in Chabazite-Related Silicoaluminophosphates: Combined FTIR and29Si MAS NMR Study. The Journal of Physical Chemistry C, 111(1), 330-339. doi:10.1021/jp063921q | es_ES |
dc.description.references | Wei, Y., Zhang, D., Xu, L., Chang, F., He, Y., Meng, S., … Liu, Z. (2008). Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins. Catalysis Today, 131(1-4), 262-269. doi:10.1016/j.cattod.2007.10.055 | es_ES |
dc.description.references | Briend, M., Vomscheid, R., Peltre, M. J., Man, P. P., & Barthomeuf, D. (1995). Influence of the Choice of the Template on the Short- and Long-Term Stability of SAPO-34 Zeolite. The Journal of Physical Chemistry, 99(20), 8270-8276. doi:10.1021/j100020a060 | es_ES |
dc.description.references | Suzuki, K., Nishio, T., Katada, N., Sastre, G., & Niwa, M. (2011). Ammonia IRMS-TPD measurements on Brønsted acidity of proton-formed SAPO-34. Phys. Chem. Chem. Phys., 13(8), 3311-3318. doi:10.1039/c0cp00961j | es_ES |
dc.description.references | Katada, N., Nouno, K., Lee, J. K., Shin, J., Hong, S. B., & Niwa, M. (2011). Acidic Properties of Cage-Based, Small-Pore Zeolites with Different Framework Topologies and Their Silicoaluminophosphate Analogues. The Journal of Physical Chemistry C, 115(45), 22505-22513. doi:10.1021/jp207894n | es_ES |
dc.description.references | Sastre, G., Lewis, D. W., & Catlow, C. R. A. (1997). Modeling of Silicon Substitution in SAPO-5 and SAPO-34 Molecular Sieves. The Journal of Physical Chemistry B, 101(27), 5249-5262. doi:10.1021/jp963736k | es_ES |
dc.description.references | Barthomeuf, D. (1994). Topological model for the compared acidity of SAPOs and SiAl zeolites. Zeolites, 14(6), 394-401. doi:10.1016/0144-2449(94)90164-3 | es_ES |
dc.description.references | Buchholz, A., Wang, W., Xu, M., Arnold, A., & Hunger, M. (2004). Sequential Steps of Ammoniation of the Microporous Silicoaluminophosphates H-SAPO-34 and H-SAPO-37 Investigated by In Situ CF MAS NMR Spectroscopy. The Journal of Physical Chemistry B, 108(10), 3107-3113. doi:10.1021/jp030249d | es_ES |
dc.description.references | Watanabe, Y., Koiwai, A., Takeuchi, H., Hyodo, S. A., & Noda, S. (1993). Multinuclear NMR Studies on the Thermal Stability of SAPO-34. Journal of Catalysis, 143(2), 430-436. doi:10.1006/jcat.1993.1287 | es_ES |
dc.description.references | BUSCA, G. (1991). FT-113 study of the surface properties of the spinels NiAl2O4 and CoAl2O4 in relation to those of transitional aluminas. Journal of Catalysis, 131(1), 167-177. doi:10.1016/0021-9517(91)90333-y | es_ES |
dc.description.references | Busca, G., Lorenzelli, V., Ramis, G., & Willey, R. J. (1993). Surface sites on spinel-type and corundum-type metal oxide powders. Langmuir, 9(6), 1492-1499. doi:10.1021/la00030a012 | es_ES |
dc.description.references | Eilertsen, E. A., Arstad, B., Svelle, S., & Lillerud, K. P. (2012). Single parameter synthesis of high silica CHA zeolites from fluoride media. Microporous and Mesoporous Materials, 153, 94-99. doi:10.1016/j.micromeso.2011.12.026 | es_ES |
dc.description.references | Bordiga, S., Regli, L., Cocina, D., Lamberti, C., Bjørgen, M., & Lillerud, K. P. (2005). Assessing the Acidity of High Silica Chabazite H−SSZ-13 by FTIR Using CO as Molecular Probe: Comparison with H−SAPO-34. The Journal of Physical Chemistry B, 109(7), 2779-2784. doi:10.1021/jp045498w | es_ES |
dc.description.references | Bleken, F., Bjørgen, M., Palumbo, L., Bordiga, S., Svelle, S., Lillerud, K.-P., & Olsbye, U. (2009). The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology. Topics in Catalysis, 52(3), 218-228. doi:10.1007/s11244-008-9158-0 | es_ES |
dc.description.references | Janssens, T. V. W. (2009). A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts. Journal of Catalysis, 264(2), 130-137. doi:10.1016/j.jcat.2009.03.004 | es_ES |
dc.description.references | Chen, D., Rebo, H. P., Moljord, K., & Holmen, A. (1997). Influence of Coke Deposition on Selectivity in Zeolite Catalysis. Industrial & Engineering Chemistry Research, 36(9), 3473-3479. doi:10.1021/ie9700223 | es_ES |
dc.description.references | Sedran, U., Mahay, A., & De Lasa, H. I. (1990). Modelling methanol conversion to hydrocarbons: revision and testing of a simple kinetic model. Chemical Engineering Science, 45(5), 1161-1165. doi:10.1016/0009-2509(90)87109-6 | es_ES |
dc.description.references | Chen, D., Rebo, H. P., Moljord, K., & Holmen, A. (1997). The role of coke deposition in the conversion of methanol to olefins over SAPO-34. Studies in Surface Science and Catalysis, 159-166. doi:10.1016/s0167-2991(97)80151-6 | es_ES |
dc.description.references | Chen, D., Rebo, H. P., Moljord, K., & Holmen, A. (1999). Methanol Conversion to Light Olefins over SAPO-34. Sorption, Diffusion, and Catalytic Reactions. Industrial & Engineering Chemistry Research, 38(11), 4241-4249. doi:10.1021/ie9807046 | es_ES |
dc.description.references | Svelle, S., Sommer, L., Barbera, K., Vennestrøm, P. N. R., Olsbye, U., Lillerud, K. P., … Beato, P. (2011). How defects and crystal morphology control the effects of desilication. Catalysis Today, 168(1), 38-47. doi:10.1016/j.cattod.2010.12.013 | es_ES |
dc.description.references | Sazama, P., Wichterlova, B., Dedecek, J., Tvaruzkova, Z., Musilova, Z., Palumbo, L., … Gonsiorova, O. (2011). FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons. Microporous and Mesoporous Materials, 143(1), 87-96. doi:10.1016/j.micromeso.2011.02.013 | es_ES |
dc.description.references | Chen, D., Grønvold, A., Moljord, K., & Holmen, A. (2007). Methanol Conversion to Light Olefins over SAPO-34: Reaction Network and Deactivation Kinetics. Industrial & Engineering Chemistry Research, 46(12), 4116-4123. doi:10.1021/ie0610748 | es_ES |
dc.description.references | Dahl, I. M., Mostad, H., Akporiaye, D., & Wendelbo, R. (1999). Structural and chemical influences on the MTO reaction: a comparison of chabazite and SAPO-34 as MTO catalysts. Microporous and Mesoporous Materials, 29(1-2), 185-190. doi:10.1016/s1387-1811(98)00330-8 | es_ES |
dc.description.references | Hereijgers, B. P. C., Bleken, F., Nilsen, M. H., Svelle, S., Lillerud, K.-P., Bjørgen, M., … Olsbye, U. (2009). Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts. Journal of Catalysis, 264(1), 77-87. doi:10.1016/j.jcat.2009.03.009 | es_ES |
dc.description.references | Song, W., Fu, H., & Haw, J. F. (2001). Supramolecular Origins of Product Selectivity for Methanol-to-Olefin Catalysis on HSAPO-34. Journal of the American Chemical Society, 123(20), 4749-4754. doi:10.1021/ja0041167 | es_ES |
dc.description.references | Arstad, B., Nicholas, J. B., & Haw, J. F. (2004). Theoretical Study of the Methylbenzene Side-Chain Hydrocarbon Pool Mechanism in Methanol to Olefin Catalysis. Journal of the American Chemical Society, 126(9), 2991-3001. doi:10.1021/ja035923j | es_ES |
dc.description.references | Zhou, H., Wang, Y., Wei, F., Wang, D., & Wang, Z. (2008). Kinetics of the reactions of the light alkenes over SAPO-34. Applied Catalysis A: General, 348(1), 135-141. doi:10.1016/j.apcata.2008.06.033 | es_ES |
dc.description.references | Chen, D., Moljord, K., & Holmen, A. (2012). A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous and Mesoporous Materials, 164, 239-250. doi:10.1016/j.micromeso.2012.06.046 | es_ES |
dc.description.references | Wang, C.-M., Wang, Y.-D., & Xie, Z.-K. (2013). Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: Are olefins themselves the dominating hydrocarbon pool species? Journal of Catalysis, 301, 8-19. doi:10.1016/j.jcat.2013.01.024 | es_ES |
dc.description.references | Wang, C.-M., Wang, Y.-D., Xie, Z.-K., & Liu, Z.-P. (2009). Methanol to Olefin Conversion on HSAPO-34 Zeolite from Periodic Density Functional Theory Calculations: A Complete Cycle of Side Chain Hydrocarbon Pool Mechanism. The Journal of Physical Chemistry C, 113(11), 4584-4591. doi:10.1021/jp810350x | es_ES |
dc.description.references | Hemelsoet, K., Van der Mynsbrugge, J., De Wispelaere, K., Waroquier, M., & Van Speybroeck, V. (2013). Unraveling the Reaction Mechanisms Governing Methanol-to-Olefins Catalysis by Theory and Experiment. ChemPhysChem, 14(8), 1526-1545. doi:10.1002/cphc.201201023 | es_ES |
dc.description.references | Westgård Erichsen, M., Svelle, S., & Olsbye, U. (2013). The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction. Catalysis Today, 215, 216-223. doi:10.1016/j.cattod.2013.03.017 | es_ES |
dc.description.references | Kim, S. J., Jang, H.-G., Lee, J. K., Min, H.-K., Hong, S. B., & Seo, G. (2011). Direct observation of hexamethylbenzenium radical cations generated during zeolite methanol-to-olefin catalysis: an ESR study. Chemical Communications, 47(33), 9498. doi:10.1039/c1cc13153b | es_ES |
dc.description.references | Alberty, R. A., & Gehrig, C. A. (1985). Standard Chemical Thermodynamic Properties of Alkene Isomer Groups. Journal of Physical and Chemical Reference Data, 14(3), 803-820. doi:10.1063/1.555737 | es_ES |