- -

The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling

Mostrar el registro completo del ítem

Bueso Ródenas, E.; Rodriguez, L.; Lorenzo Orts, L.; González Guzmán, M.; Sayas Montañana, EM.; Muñoz Bertomeu, J.; Ibañez, C.... (2014). The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. Plant Journal. 80(6):1057-1071. https://doi.org/10.1111/tpj.12708

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/68682

Ficheros en el ítem

Metadatos del ítem

Título: The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling
Autor: Bueso Ródenas, Eduardo Rodriguez, Lesia Lorenzo Orts, Laura González Guzmán, Miguel Sayas Montañana, Enric Miquel Muñoz Bertomeu, Jesús Ibañez, Carla Serrano Salom, Ramón Rodríguez Egea, Pedro Luís
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Membrane-delimited events play a crucial role for ABA signaling and PYR/PYL/RCAR ABA receptors, clade A PP2Cs and SnRK2/CPK kinases modulate the activity of different plasma membrane components involved in ABA action. ...[+]
Palabras clave: ABA receptor , Protein turnover , RING E3 ubiquitin ligase , RFA gene family , Arabidopsis thaliana
Derechos de uso: Cerrado
Fuente:
Plant Journal. (issn: 0960-7412 )
DOI: 10.1111/tpj.12708
Editorial:
Wiley
Versión del editor: https://dx.doi.org/10.1111/tpj.12708
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BIO2011-23446/ES/SEÑALIZACION DE ABA MEDIADA POR LOS RECEPTORES PYR%2FPYL Y SU CONEXION CON LOS MECANISMOS DE RESISTENCIA A SEQUIA/
info:eu-repo/grantAgreement/MICINN//BFU2011-22526/ES/NUEVOS MECANISMOS DE TRANSMISION DE SEÑALES DURANTE EL METABOLISMO DE GLUCOSA Y LA ACIDIFICACION INTRACELULAR: AMPLIANDO LAS FUNCIONES DE LA PROTEINA FOSFATASA 1 Y LA PROTEINA/
Agradecimientos:
This work was supported by the Ministerio de Ciencia e Innovacion, Fondo Europeo de Desarrollo Regional and Consejo Superior de Investigaciones Cientificas (grants BIO2011-23446 to P.L.R.; BFU2011-22526 to R.S.; fellowship ...[+]
Tipo: Artículo

References

Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G. A., Fernandez, M. A., … Rodriguez, P. L. (2012). PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root. Plant Physiology, 161(2), 931-941. doi:10.1104/pp.112.208678

Barberon, M., Zelazny, E., Robert, S., Conéjéro, G., Curie, C., Friml, J., & Vert, G. (2011). Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants. Proceedings of the National Academy of Sciences, 108(32), E450-E458. doi:10.1073/pnas.1100659108

Batistič, O., Sorek, N., Schültke, S., Yalovsky, S., & Kudla, J. (2008). Dual Fatty Acyl Modification Determines the Localization and Plasma Membrane Targeting of CBL/CIPK Ca2+ Signaling Complexes in Arabidopsis. The Plant Cell, 20(5), 1346-1362. doi:10.1105/tpc.108.058123 [+]
Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G. A., Fernandez, M. A., … Rodriguez, P. L. (2012). PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root. Plant Physiology, 161(2), 931-941. doi:10.1104/pp.112.208678

Barberon, M., Zelazny, E., Robert, S., Conéjéro, G., Curie, C., Friml, J., & Vert, G. (2011). Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants. Proceedings of the National Academy of Sciences, 108(32), E450-E458. doi:10.1073/pnas.1100659108

Batistič, O., Sorek, N., Schültke, S., Yalovsky, S., & Kudla, J. (2008). Dual Fatty Acyl Modification Determines the Localization and Plasma Membrane Targeting of CBL/CIPK Ca2+ Signaling Complexes in Arabidopsis. The Plant Cell, 20(5), 1346-1362. doi:10.1105/tpc.108.058123

Batistič, O., Rehers, M., Akerman, A., Schlücking, K., Steinhorst, L., Yalovsky, S., & Kudla, J. (2012). S-acylation-dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses. Cell Research, 22(7), 1155-1168. doi:10.1038/cr.2012.71

Belda-Palazón, B., Ruiz, L., Martí, E., Tárraga, S., Tiburcio, A. F., Culiáñez, F., … Ferrando, A. (2012). Aminopropyltransferases Involved in Polyamine Biosynthesis Localize Preferentially in the Nucleus of Plant Cells. PLoS ONE, 7(10), e46907. doi:10.1371/journal.pone.0046907

Brandt, B., Brodsky, D. E., Xue, S., Negi, J., Iba, K., Kangasjarvi, J., … Schroeder, J. I. (2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proceedings of the National Academy of Sciences, 109(26), 10593-10598. doi:10.1073/pnas.1116590109

Bueso, E., Ibañez, C., Sayas, E., Muñoz-Bertomeu, J., Gonzalez-Guzmán, M., Rodriguez, P. L., & Serrano, R. (2014). A forward genetic approach in Arabidopsis thaliana identifies a RING-type ubiquitin ligase as a novel determinant of seed longevity. Plant Science, 215-216, 110-116. doi:10.1016/j.plantsci.2013.11.004

Capili, A. D., Edghill, E. ., Wu, K., & Borden, K. L. . (2004). Structure of the C-terminal RING Finger from a RING-IBR-RING/TRIAD Motif Reveals a Novel Zinc-binding Domain Distinct from a RING. Journal of Molecular Biology, 340(5), 1117-1129. doi:10.1016/j.jmb.2004.05.035

Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979

Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122

Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743

Demir, F., Horntrich, C., Blachutzik, J. O., Scherzer, S., Reinders, Y., Kierszniowska, S., … Kreuzer, I. (2013). Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proceedings of the National Academy of Sciences, 110(20), 8296-8301. doi:10.1073/pnas.1211667110

French, A. P., Mills, S., Swarup, R., Bennett, M. J., & Pridmore, T. P. (2008). Colocalization of fluorescent markers in confocal microscope images of plant cells. Nature Protocols, 3(4), 619-628. doi:10.1038/nprot.2008.31

Friml, J. (2010). Subcellular trafficking of PIN auxin efflux carriers in auxin transport. European Journal of Cell Biology, 89(2-3), 231-235. doi:10.1016/j.ejcb.2009.11.003

Fujii, H., & Zhu, J.-K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences, 106(20), 8380-8385. doi:10.1073/pnas.0903144106

Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., … Yamaguchi-Shinozaki, K. (2009). Three SnRK2 Protein Kinases are the Main Positive Regulators of Abscisic Acid Signaling in Response to Water Stress in Arabidopsis. Plant and Cell Physiology, 50(12), 2123-2132. doi:10.1093/pcp/pcp147

Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., … Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences, 106(50), 21425-21430. doi:10.1073/pnas.0912021106

Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., … Hedrich, R. (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+affinities. Proceedings of the National Academy of Sciences, 107(17), 8023-8028. doi:10.1073/pnas.0912030107

Geiger, D., Maierhofer, T., AL-Rasheid, K. A. S., Scherzer, S., Mumm, P., Liese, A., … Hedrich, R. (2011). Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1. Science Signaling, 4(173), ra32-ra32. doi:10.1126/scisignal.2001346

Geldner, N., & Jürgens, G. (2006). Endocytosis in signalling and development. Current Opinion in Plant Biology, 9(6), 589-594. doi:10.1016/j.pbi.2006.09.011

Geldner, N., Dénervaud-Tendon, V., Hyman, D. L., Mayer, U., Stierhof, Y.-D., & Chory, J. (2009). Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. The Plant Journal, 59(1), 169-178. doi:10.1111/j.1365-313x.2009.03851.x

Gonzalez-Guzman, M., Pizzio, G. A., Antoni, R., Vera-Sirera, F., Merilo, E., Bassel, G. W., … Rodriguez, P. L. (2012). Arabidopsis PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid. The Plant Cell, 24(6), 2483-2496. doi:10.1105/tpc.112.098574

Hirsch, C., Gauss, R., Horn, S. C., Neuber, O., & Sommer, T. (2009). The ubiquitylation machinery of the endoplasmic reticulum. Nature, 458(7237), 453-460. doi:10.1038/nature07962

Hua, Z., & Vierstra, R. D. (2011). The Cullin-RING Ubiquitin-Protein Ligases. Annual Review of Plant Biology, 62(1), 299-334. doi:10.1146/annurev-arplant-042809-112256

Irigoyen, M. L., Iniesto, E., Rodriguez, L., Puga, M. I., Yanagawa, Y., Pick, E., … Rubio, V. (2014). Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis. The Plant Cell, 26(2), 712-728. doi:10.1105/tpc.113.122234

Jones, A. M., Xuan, Y., Xu, M., Wang, R.-S., Ho, C.-H., Lalonde, S., … Frommer, W. B. (2014). Border Control--A Membrane-Linked Interactome of Arabidopsis. Science, 344(6185), 711-716. doi:10.1126/science.1251358

Kasai, K., Takano, J., Miwa, K., Toyoda, A., & Fujiwara, T. (2010). High Boron-induced Ubiquitination Regulates Vacuolar Sorting of the BOR1 Borate Transporter inArabidopsis thaliana. Journal of Biological Chemistry, 286(8), 6175-6183. doi:10.1074/jbc.m110.184929

Kim, D.-Y., Scalf, M., Smith, L. M., & Vierstra, R. D. (2013). Advanced Proteomic Analyses Yield a Deep Catalog of Ubiquitylation Targets in Arabidopsis. The Plant Cell, 25(5), 1523-1540. doi:10.1105/tpc.112.108613

Kollist, H., Nuhkat, M., & Roelfsema, M. R. G. (2014). Closing gaps: linking elements that control stomatal movement. New Phytologist, 203(1), 44-62. doi:10.1111/nph.12832

Kosarev, P., Mayer, K. F., & Hardtke, C. S. (2002). Genome Biology, 3(4), research0016.1. doi:10.1186/gb-2002-3-4-research0016

Lee, S. C., Lan, W., Buchanan, B. B., & Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences, 106(50), 21419-21424. doi:10.1073/pnas.0910601106

Liu, L., Zhang, Y., Tang, S., Zhao, Q., Zhang, Z., Zhang, H., … Xie, Q. (2010). An efficient system to detect protein ubiquitination by agroinfiltration inNicotiana benthamiana. The Plant Journal, 61(5), 893-903. doi:10.1111/j.1365-313x.2009.04109.x

Lyzenga, W. J., & Stone, S. L. (2011). Abiotic stress tolerance mediated by protein ubiquitination. Journal of Experimental Botany, 63(2), 599-616. doi:10.1093/jxb/err310

MacGurn, J. A., Hsu, P.-C., & Emr, S. D. (2012). Ubiquitin and Membrane Protein Turnover: From Cradle to Grave. Annual Review of Biochemistry, 81(1), 231-259. doi:10.1146/annurev-biochem-060210-093619

Manzano, C., Abraham, Z., López-Torrejón, G., & Del Pozo, J. C. (2008). Identification of ubiquitinated proteins in Arabidopsis. Plant Molecular Biology, 68(1-2), 145-158. doi:10.1007/s11103-008-9358-9

Oñate-Sánchez, L., & Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes, 1(1), 93. doi:10.1186/1756-0500-1-93

Osakabe, Y., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L.-S. P. (2013). ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytologist, 202(1), 35-49. doi:10.1111/nph.12613

Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J., & Jackson, C. L. (1999). Brefeldin A Acts to Stabilize an Abortive ARF–GDP–Sec7 Domain Protein Complex. Molecular Cell, 3(3), 275-285. doi:10.1016/s1097-2765(00)80455-4

Pizzio, G. A., Rodriguez, L., Antoni, R., Gonzalez-Guzman, M., Yunta, C., Merilo, E., … Rodriguez, P. L. (2013). The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance. Plant Physiology, 163(1), 441-455. doi:10.1104/pp.113.224162

Pollier, J., Moses, T., González-Guzmán, M., De Geyter, N., Lippens, S., Bossche, R. V., … Goossens, A. (2013). The protein quality control system manages plant defence compound synthesis. Nature, 504(7478), 148-152. doi:10.1038/nature12685

Popper, Z. A., Michel, G., Hervé, C., Domozych, D. S., Willats, W. G. T., Tuohy, M. G., … Stengel, D. B. (2011). Evolution and Diversity of Plant Cell Walls: From Algae to Flowering Plants. Annual Review of Plant Biology, 62(1), 567-590. doi:10.1146/annurev-arplant-042110-103809

Van Der Reijden, B. A., Erpelinck-Verschueren, C. A. J., BOB LÖWENBERG, & Jansen, J. H. (1999). TRIADs: A new class of proteins with a novel cysteine-rich signature. Protein Science, 8(7), 1557-1561. doi:10.1110/ps.8.7.1557

Richardson, L. G. L., Howard, A. S. M., Khuu, N., Gidda, S. K., McCartney, A., Morphy, B. J., & Mullen, R. T. (2011). Protein–Protein Interaction Network and Subcellular Localization of the Arabidopsis Thaliana ESCRT Machinery. Frontiers in Plant Science, 2. doi:10.3389/fpls.2011.00020

Robinson, D. G., Langhans, M., Saint-Jore-Dupas, C., & Hawes, C. (2008). BFA effects are tissue and not just plant specific. Trends in Plant Science, 13(8), 405-408. doi:10.1016/j.tplants.2008.05.010

Saez, A., Robert, N., Maktabi, M. H., Schroeder, J. I., Serrano, R., & Rodriguez, P. L. (2006). Enhancement of Abscisic Acid Sensitivity and Reduction of Water Consumption in Arabidopsis by Combined Inactivation of the Protein Phosphatases Type 2C ABI1 and HAB1. Plant Physiology, 141(4), 1389-1399. doi:10.1104/pp.106.081018

Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.x

Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, 459(7250), 1071-1078. doi:10.1038/nature08122

Saracco, S. A., Hansson, M., Scalf, M., Walker, J. M., Smith, L. M., & Vierstra, R. D. (2009). Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. The Plant Journal, 59(2), 344-358. doi:10.1111/j.1365-313x.2009.03862.x

Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., … Uozumi, N. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochemical Journal, 424(3), 439-448. doi:10.1042/bj20091221

Scheuring, D., Künzl, F., Viotti, C., Yan, M. S. W., Jiang, L., Schellmann, S., … Pimpl, P. (2012). Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway. BMC Plant Biology, 12(1), 164. doi:10.1186/1471-2229-12-164

Sirichandra, C., Gu, D., Hu, H.-C., Davanture, M., Lee, S., Djaoui, M., … Kwak, J. M. (2009). Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Letters, 583(18), 2982-2986. doi:10.1016/j.febslet.2009.08.033

Smalle, J., & Vierstra, R. D. (2004). THE UBIQUITIN 26S PROTEASOME PROTEOLYTIC PATHWAY. Annual Review of Plant Biology, 55(1), 555-590. doi:10.1146/annurev.arplant.55.031903.141801

Spitzer, C., Reyes, F. C., Buono, R., Sliwinski, M. K., Haas, T. J., & Otegui, M. S. (2009). The ESCRT-Related CHMP1A and B Proteins Mediate Multivesicular Body Sorting of Auxin Carriers in Arabidopsis and Are Required for Plant Development. The Plant Cell, 21(3), 749-766. doi:10.1105/tpc.108.064865

Teis, D., Saksena, S., & Emr, S. D. (2009). SnapShot: The ESCRT Machinery. Cell, 137(1), 182-182.e1. doi:10.1016/j.cell.2009.03.027

Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., … Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences, 106(41), 17588-17593. doi:10.1073/pnas.0907095106

Vierstra, R. D. (2009). The ubiquitin–26S proteasome system at the nexus of plant biology. Nature Reviews Molecular Cell Biology, 10(6), 385-397. doi:10.1038/nrm2688

Viotti, C., Bubeck, J., Stierhof, Y.-D., Krebs, M., Langhans, M., van den Berg, W., … Schumacher, K. (2010). Endocytic and Secretory Traffic in Arabidopsis Merge in the Trans-Golgi Network/Early Endosome, an Independent and Highly Dynamic Organelle. The Plant Cell, 22(4), 1344-1357. doi:10.1105/tpc.109.072637

Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., … Merlot, S. (2009). Protein Phosphatases 2C Regulate the Activation of the Snf1-Related Kinase OST1 by Abscisic Acid in Arabidopsis. The Plant Cell, 21(10), 3170-3184. doi:10.1105/tpc.109.069179

Voinnet, O., Rivas, S., Mestre, P., & Baulcombe, D. (2003). Retracted: An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal, 33(5), 949-956. doi:10.1046/j.1365-313x.2003.01676.x

Zhao, Q., Tian, M., Li, Q., Cui, F., Liu, L., Yin, B., & Xie, Q. (2013). A plant-specificin vitroubiquitination analysis system. The Plant Journal, 74(3), 524-533. doi:10.1111/tpj.12127

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem