Mostrar el registro sencillo del ítem
dc.contributor.author | Liu, Ying-Ya | es_ES |
dc.contributor.author | Grzywa, Maciej | es_ES |
dc.contributor.author | Tonigold, Markus | es_ES |
dc.contributor.author | Sastre Navarro, German Ignacio | es_ES |
dc.contributor.author | Schuettrigkeit, Tanja | es_ES |
dc.contributor.author | Leeson, Nicholas S. | es_ES |
dc.contributor.author | Volkmer, Dirk | es_ES |
dc.date.accessioned | 2016-09-20T11:18:16Z | |
dc.date.available | 2016-09-20T11:18:16Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1477-9226 | |
dc.identifier.uri | http://hdl.handle.net/10251/70151 | |
dc.description.abstract | The syntheses of Kuratowski-type pentanuclear clusters featuring {MZn4Cl4} cores (M-II = Ru or Zn) that incorporate triazolate ligands are described. The coordination compounds are characterized by single-crystal X-ray diffraction, X-ray powder diffraction (XRD), FTIR-and UV-vis spectroscopy. [(RuZn4Cl4)-Zn-II(Me(2)bta)(6)]center dot 2DMF (Me(2)bta(-) = 5,6-dimethyl-1,2,3-benzotriazolate) (1) crystallizes in the cubic system, while [Zn5Cl4(ta)(6)] (ta(-) = 1,2,3-triazolate) (3) crystallizes in the tetragonal system. Both compounds feature structurally similar cluster topologies in which the central octahedrally coordinated metal ion is coordinated to six triazolate ligands. Each triazolate ligand is coordinated with two zinc ions (mu(3)-bridging mode), leading altogether to a pentanuclear cluster of T-d point group symmetry. Photophysical investigations reveal that compound [Zn5Cl4(Me(2)bta)(6)]center dot 2DMF (2) shows a short-lived excited electronic state, which can be populated with high quantum yield. The isostructural compound [(RuZn4Cl4)-Zn-II(Me(2)bta)(6)]center dot 2DMF (1), on the other hand, shows a long-lived photoexcited state, owing to an internal singlet to triplet conversion of the electronic states, as revealed by time-resolved fluorescence spectroscopy. Insights gained from these studies open up novel design strategies towards photocatalytically active metal-organic frameworks incorporating photoactive Kuratowski-type secondary building units such as MFU-4 (Metal-Organic Framework Ulm University-4). | es_ES |
dc.description.sponsorship | Financial support from the German Research Foundation (DFG Priority Program 1362 "Porous Metal-Organic Frameworks", VO 829/5-1) is gratefully acknowledged. M.T. is grateful to the Landesgraduiertenforderung Baden-Wurttemberg for financial support. GS thanks Ministerio de Ciencia e Innovacion of Spain for funding through project MAT2007-64682. BSC (Barcelona Supercomputing Centre) is thanked for providing computer resources. Helpful discussions with Dr Virginie Lhiaubet are gratefully acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Dalton Transactions | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | ZETA-VALENCE QUALITY | es_ES |
dc.subject | GENERALIZED GRADIENT APPROXIMATION | es_ES |
dc.subject | GAUSSIAN-BASIS SETS | es_ES |
dc.subject | RUTHENIUM(II) COMPLEXES | es_ES |
dc.subject | CORRELATION-ENERGY | es_ES |
dc.subject | ADJUSTABLE-PARAMETERS | es_ES |
dc.subject | TRINUCLEAR COMPLEXES | es_ES |
dc.subject | CRYSTAL-STRUCTURE | es_ES |
dc.subject | REDOX PROPERTIES | es_ES |
dc.subject | D-ORBITALS | es_ES |
dc.title | Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII=Zn or Ru) featuring long-lived excited electronic states | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c0dt01750g | |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//VO 829%2F5-1/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MAT2007-64682/ES/ADSORCION Y CATALISIS EN SOLIDOS POROSOS METAL-ORGANICOS POR METODOS QUIMICO-COMPUTACIONALES/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Liu, Y.; Grzywa, M.; Tonigold, M.; Sastre Navarro, GI.; Schuettrigkeit, T.; Leeson, NS.; Volkmer, D. (2011). Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII=Zn or Ru) featuring long-lived excited electronic states. Dalton Transactions. 40(22):5926-5938. https://doi.org/10.1039/c0dt01750g | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c0dt01750g | es_ES |
dc.description.upvformatpinicio | 5926 | es_ES |
dc.description.upvformatpfin | 5938 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 40 | es_ES |
dc.description.issue | 22 | es_ES |
dc.relation.senia | 217081 | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |
dc.contributor.funder | Baden-Württemberg Landesregierung | es_ES |
dc.description.references | Shaw, R., Laye, R. H., Jones, L. F., Low, D. M., Talbot-Eeckelaers, C., Wei, Q., … McInnes, E. J. L. (2007). 1,2,3-Triazolate-Bridged Tetradecametallic Transition Metal Clusters [M14(L)6O6(OMe)18X6] (M = FeIII, CrIIIand VIII/IV) and Related Compounds: Ground-State Spins Ranging fromS= 0 toS= 25 and Spin-Enhanced Magnetocaloric Effect. Inorganic Chemistry, 46(12), 4968-4978. doi:10.1021/ic070320k | es_ES |
dc.description.references | Tekarli, S. M., Cundari, T. R., & Omary, M. A. (2008). Rational Design of Macrometallocyclic Trinuclear Complexes with Superior π-Acidity and π-Basicity. Journal of the American Chemical Society, 130(5), 1669-1675. doi:10.1021/ja076527u | es_ES |
dc.description.references | Zhang, J.-P., Lin, Y.-Y., Huang, X.-C., & Chen, X.-M. (2005). Copper(I) 1,2,4-Triazolates and Related Complexes: Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties. Journal of the American Chemical Society, 127(15), 5495-5506. doi:10.1021/ja042222t | es_ES |
dc.description.references | Rocha, R. C., & Toma, H. E. (2003). Intervalence, electron transfer and redox properties of a triazolate-bridged ruthenium-polypyridine dinuclear complex. Polyhedron, 22(10), 1303-1313. doi:10.1016/s0277-5387(03)00105-0 | es_ES |
dc.description.references | Rocha, R. C., Rein, F. N., Jude, H., Shreve, A. P., Concepcion, J. J., & Meyer, T. J. (2008). Observation of Three Intervalence-Transfer Bands for a Class II–III Mixed-Valence Complex of Ruthenium. Angewandte Chemie International Edition, 47(3), 503-506. doi:10.1002/anie.200702760 | es_ES |
dc.description.references | Struthers, H., Spingler, B., Mindt, T. L., & Schibli, R. (2008). «Click‐to‐Chelate»: Design and Incorporation of Triazole‐Containing Metal‐Chelating Systems into Biomolecules of Diagnostic and Therapeutic Interest. Chemistry - A European Journal, 14(20), 6173-6183. doi:10.1002/chem.200702024 | es_ES |
dc.description.references | Jernigan, F. E., Sieracki, N. A., Taylor, M. T., Jenkins, A. S., Engel, S. E., Rowe, B. W., … Ferrence, G. M. (2007). Sterically Bulky Tris(triazolyl)borate Ligands as Water-Soluble Analogues of Tris(pyrazolyl)borate. Inorganic Chemistry, 46(2), 360-362. doi:10.1021/ic061828a | es_ES |
dc.description.references | Ferrer, S., Ballesteros, R., Sambartolomé, A., González, M., Alzuet, G., Borrás, J., & Liu, M. (2004). Syntheses, crystal structures, and oxidative DNA cleavage of some Cu(II) complexes of 5-amino-3-pyridin-2-yl-1,2,4-triazole. Journal of Inorganic Biochemistry, 98(8), 1436-1446. doi:10.1016/j.jinorgbio.2004.05.004 | es_ES |
dc.description.references | Obata, M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J. A., Tanaka, R., … Yano, S. (2008). Syntheses, structural characterization and photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(i) complexes. Dalton Transactions, (25), 3292. doi:10.1039/b718538c | es_ES |
dc.description.references | Schweinfurth, D., Pattacini, R., Strobel, S., & Sarkar, B. (2009). New 1,2,3-triazole ligands through click reactions and their palladium and platinum complexes. Dalton Transactions, (42), 9291. doi:10.1039/b910660j | es_ES |
dc.description.references | Potts, K. T. (1961). The Chemistry of 1,2,4-Triazoles. Chemical Reviews, 61(2), 87-127. doi:10.1021/cr60210a001 | es_ES |
dc.description.references | Richardson, C., & Steel, P. J. (2003). Benzotriazole as a structural component in chelating and bridging heterocyclic ligands; ruthenium, palladium, copper and silver complexes. Dalton Transactions, (5), 992-1000. doi:10.1039/b206990c | es_ES |
dc.description.references | Rocha, R. C., & Toma, H. E. (2003). Transition Metal Chemistry, 28(1), 43-50. doi:10.1023/a:1022510505110 | es_ES |
dc.description.references | Rocha, R. C., & Toma, H. E. (2000). Asymmetric mixed-valence binuclear ruthenium complexes containing benzotriazolate or benzimidazolate bridging ligands. Inorganica Chimica Acta, 310(1), 65-80. doi:10.1016/s0020-1693(00)00270-x | es_ES |
dc.description.references | Rocha, R. C., & Toma, H. E. (2002). Benzotriazolate-bridged ruthenium dinuclear and trinuclear complexes. Polyhedron, 21(21), 2089-2098. doi:10.1016/s0277-5387(02)01135-x | es_ES |
dc.description.references | Felici, M., Contreras-Carballada, P., Vida, Y., Smits, J. M. â M., Nolte, R. J. â M., Deâ Cola, L., … Feiters, M. (2009). IrIIIand RuIIComplexes Containing Triazole-Pyridine Ligands: Luminescence Enhancement upon Substitution with β-Cyclodextrin. Chemistry - A European Journal, 15(47), 13124-13134. doi:10.1002/chem.200901582 | es_ES |
dc.description.references | Schulze, B., Friebe, C., Hager, M. D., Winter, A., Hoogenboom, R., Görls, H., & Schubert, U. S. (2009). 2,2′:6′,2″-Terpyridine meets 2,6-bis(1H-1,2,3-triazol-4-yl)pyridine: tuning the electro-optical properties of ruthenium(ii) complexes. Dalton Trans., (5), 787-794. doi:10.1039/b813925c | es_ES |
dc.description.references | Biswas, S., Tonigold, M., Speldrich, M., Kögerler, P., Weil, M., & Volkmer, D. (2010). Syntheses and Magnetostructural Investigations on Kuratowski-Type Homo- and Heteropentanuclear Coordination Compounds [MZn4Cl4(L)6] (MII= Zn, Fe, Co, Ni, or Cu; L = 5,6-Dimethyl-1,2,3-benzotriazolate) Represented by the NonplanarK3,3Graph. Inorganic Chemistry, 49(16), 7424-7434. doi:10.1021/ic100749k | es_ES |
dc.description.references | Biswas, S., Tonigold, M., & Volkmer, D. (2008). Homo- and Heteropentanuclear Coordination Compounds withTdSymmetry - the Solid State Structures of [MZn4(L)4(L′)6] (M = CoIIor Zn; L = chloride or acac; L′ = 1,2,3-benzotriazolate). Zeitschrift für anorganische und allgemeine Chemie, 634(14), 2532-2538. doi:10.1002/zaac.200800296 | es_ES |
dc.description.references | Yuan, Y.-X., Wei, P.-J., Qin, W., Zhang, Y., Yao, J.-L., & Gu, R.-A. (2007). Combined Studies on the Surface Coordination Chemistry of Benzotriazole at the Copper Electrode by Direct Electrochemical Synthesis and Surface-Enhanced Raman Spectroscopy. European Journal of Inorganic Chemistry, 2007(31), 4980-4987. doi:10.1002/ejic.200700436 | es_ES |
dc.description.references | Bai, Y., Tao, J., Huang, R., & Zheng, L. (2008). The Designed Assembly of Augmented Diamond Networks From Predetermined Pentanuclear Tetrahedral Units. Angewandte Chemie International Edition, 47(29), 5344-5347. doi:10.1002/anie.200800403 | es_ES |
dc.description.references | Handley, J., Collison, D., Garner, C. D., Helliwell, M., Docherty, R., Lawson, J. R., & Tasker, P. A. (1993). Hexakis(benzotriazolato)tetrakis(2,4-pentanedionato)pentacopper(II): A Model for Corrosion Inhibition. Angewandte Chemie International Edition in English, 32(7), 1036-1038. doi:10.1002/anie.199310361 | es_ES |
dc.description.references | Murrie, M., Collison, D., Garner, C. D., Helliwell, M., Tasker, P. A., & Turner, S. S. (1998). Synthesis structure magnetic properties of [Cu5(bta)6L4] (bta=benzotriazolate;L=β-diketonate) Clusters. Polyhedron, 17(17), 3031-3043. doi:10.1016/s0277-5387(98)00161-2 | es_ES |
dc.description.references | Kokoszka, G. F., Baranowski, J., Goldstein, C., Orsini, J., Mighell, A. D., Himes, V. L., & Siedle, A. R. (1983). Two-dimensional dynamical Jahn-Teller effects in a mixed-valence benzotriazolato copper cluster, Cu5(BTA)6(RNC)4. Journal of the American Chemical Society, 105(17), 5627-5633. doi:10.1021/ja00355a017 | es_ES |
dc.description.references | Biswas, S., Grzywa, M., Nayek, H. P., Dehnen, S., Senkovska, I., Kaskel, S., & Volkmer, D. (2009). A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. Dalton Transactions, (33), 6487. doi:10.1039/b904280f | es_ES |
dc.description.references | Denysenko, D., Grzywa, M., Tonigold, M., Streppel, B., Krkljus, I., Hirscher, M., … Volkmer, D. (2011). Elucidating Gating Effects for Hydrogen Sorption in MFU-4-Type Triazolate-Based Metal-Organic Frameworks Featuring Different Pore Sizes. Chemistry - A European Journal, 17(6), 1837-1848. doi:10.1002/chem.201001872 | es_ES |
dc.description.references | Kuratowski, C. (1930). Sur le problème des courbes gauches en Topologie. Fundamenta Mathematicae, 15, 271-283. doi:10.4064/fm-15-1-271-283 | es_ES |
dc.description.references | Biswas, S., Tonigold, M., Speldrich, M., Kögerler, P., & Volkmer, D. (2009). Nonanuclear Coordination Compounds Featuring {M9L12}6+Cores (M = NiII, CoII, or ZnII; L = 1,2,3-Benzotriazolate). European Journal of Inorganic Chemistry, 2009(21), 3094-3101. doi:10.1002/ejic.200900156 | es_ES |
dc.description.references | Biswas, S., Tonigold, M., Kelm, H., Krüger, H.-J., & Volkmer, D. (2010). Thermal spin-crossover in the [M3Zn6Cl6L12] (M = Zn, FeII; L = 5,6-dimethoxy-1,2,3-benzotriazolate) system: structural, electrochemical, Mössbauer, and UV-Vis spectroscopic studies. Dalton Transactions, 39(41), 9851. doi:10.1039/c0dt00556h | es_ES |
dc.description.references | Wang, X.-L., Qin, C., Wu, S.-X., Shao, K.-Z., Lan, Y.-Q., Wang, S., … Wang, E.-B. (2009). Bottom-Up Synthesis of Porous Coordination Frameworks: Apical Substitution of a Pentanuclear Tetrahedral Precursor. Angewandte Chemie International Edition, 48(29), 5291-5295. doi:10.1002/anie.200902274 | es_ES |
dc.description.references | Vlček, A., & Záliš, S. (2007). Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques. Coordination Chemistry Reviews, 251(3-4), 258-287. doi:10.1016/j.ccr.2006.05.021 | es_ES |
dc.description.references | Evans, I. P., Spencer, A., & Wilkinson, G. (1973). Dichlorotetrakis(dimethyl sulphoxide)ruthenium(II) and its use as a source material for some new ruthenium(II) complexes. Journal of the Chemical Society, Dalton Transactions, (2), 204. doi:10.1039/dt9730000204 | es_ES |
dc.description.references | Anzellotti, A., & Briceño, A. (2001). Hexakis(acetonitrile)ruthenium(II) tetrachlorozincate 2.55-hydrate. Acta Crystallographica Section E Structure Reports Online, 57(11), m538-m540. doi:10.1107/s1600536801017469 | es_ES |
dc.description.references | Reisner, E., Arion, V. B., Rufińska, A., Chiorescu, I., Schmid, W. F., & Keppler, B. K. (2005). Isomeric [RuCl2(dmso)2(indazole)2] complexes: ruthenium(ii)-mediated coupling reaction of acetonitrile with 1H-indazole. Dalton Transactions, (14), 2355. doi:10.1039/b503650j | es_ES |
dc.description.references | Duati, M., Tasca, S., Lynch, F. C., Bohlen, H., Vos, J. G., Stagni, S., & Ward, M. D. (2003). Enhancement of Luminescence Lifetimes of Mononuclear Ruthenium(II)−Terpyridine Complexes by Manipulation of the σ-Donor Strength of Ligands. Inorganic Chemistry, 42(25), 8377-8384. doi:10.1021/ic034691m | es_ES |
dc.description.references | Stagni, S., Orselli, E., Palazzi, A., De Cola, L., Zacchini, S., Femoni, C., … Zanarini, S. (2007). Polypyridyl Ruthenium(II) Complexes with Tetrazolate-Based Chelating Ligands. Synthesis, Reactivity, and Electrochemical and Photophysical Properties. Inorganic Chemistry, 46(22), 9126-9138. doi:10.1021/ic7011556 | es_ES |
dc.description.references | Giuffrida, G., Calogero, G., Guglielmo, G., Ricevuto, V., Ciano, M., & Campagna, S. (1993). Mono- and dinuclear complexes of ruthenium(II) and osmium(II) with a 3,5-bis(2-pyridyl)-1,2,4-triazole cyclohexyl-bridged spacer. Absorption spectra, luminescence properties, and electrochemical behavior. Inorganic Chemistry, 32(7), 1179-1183. doi:10.1021/ic00059a025 | es_ES |
dc.description.references | Araki, K., Rein, F. N., Camera, S. G., & Toma, H. E. (1992). Spectroelectrochemical and kinetic behaviour of the [Ru(edta)-(diethyldithiocarbamate)] complex. Transition Metal Chemistry, 17(6), 535-538. doi:10.1007/bf02910752 | es_ES |
dc.description.references | Alessio, E., Balducci, G., Lutman, A., Mestroni, G., Calligaris, M., & Attia, W. M. (1993). Synthesis and characterization of two new classes of ruthenium(III)-sulfoxide complexes with nitrogen donor ligands (L): Na[trans-RuCl4(R2SO)(L)] and mer, cis-RuCl3(R2SO)(R2SO)(L). The crystal structure of Na[trans-RuCl4(DMSO)(NH3)] · 2DMSO, Na[trans-RuCl4(DMSO)(Im)] · H2O, Me2CO (Im = imidazole) and mer, cis-RuCl3(DMSO)(DMSO)(NH3). Inorganica Chimica Acta, 203(2), 205-217. doi:10.1016/s0020-1693(00)81659-x | es_ES |
dc.description.references | Ahlrichs, R., Bär, M., Häser, M., Horn, H., & Kölmel, C. (1989). Electronic structure calculations on workstation computers: The program system turbomole. Chemical Physics Letters, 162(3), 165-169. doi:10.1016/0009-2614(89)85118-8 | es_ES |
dc.description.references | Thiel, W., & Voityuk, A. A. (1992). Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results. Theoretica Chimica Acta, 81(6), 391-404. doi:10.1007/bf01134863 | es_ES |
dc.description.references | Thiel, W., & Voityuk, A. A. (1996). Extension of MNDO to d Orbitals: Parameters and Results for the Second-Row Elements and for the Zinc Group. The Journal of Physical Chemistry, 100(2), 616-626. doi:10.1021/jp952148o | es_ES |
dc.description.references | Becke, A. D. (1996). Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing. The Journal of Chemical Physics, 104(3), 1040-1046. doi:10.1063/1.470829 | es_ES |
dc.description.references | Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785 | es_ES |
dc.description.references | Perdew, J. P. (1986). Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B, 33(12), 8822-8824. doi:10.1103/physrevb.33.8822 | es_ES |
dc.description.references | Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46(11), 6671-6687. doi:10.1103/physrevb.46.6671 | es_ES |
dc.description.references | Hamprecht, F. A., Cohen, A. J., Tozer, D. J., & Handy, N. C. (1998). Development and assessment of new exchange-correlation functionals. The Journal of Chemical Physics, 109(15), 6264-6271. doi:10.1063/1.477267 | es_ES |
dc.description.references | Wilson, P. J., Bradley, T. J., & Tozer, D. J. (2001). Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials. The Journal of Chemical Physics, 115(20), 9233-9242. doi:10.1063/1.1412605 | es_ES |
dc.description.references | Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098-3100. doi:10.1103/physreva.38.3098 | es_ES |
dc.description.references | Adamo, C., & Barone, V. (1998). Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. The Journal of Chemical Physics, 108(2), 664-675. doi:10.1063/1.475428 | es_ES |
dc.description.references | Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522 | es_ES |
dc.description.references | Schmider, H. L., & Becke, A. D. (1998). Optimized density functionals from the extended G2 test set. The Journal of Chemical Physics, 108(23), 9624-9631. doi:10.1063/1.476438 | es_ES |
dc.description.references | Van Voorhis, T., & Scuseria, G. E. (1998). A novel form for the exchange-correlation energy functional. The Journal of Chemical Physics, 109(2), 400-410. doi:10.1063/1.476577 | es_ES |
dc.description.references | Becke, A. D. (1993). A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics, 98(2), 1372-1377. doi:10.1063/1.464304 | es_ES |
dc.description.references | Boese, A. D., & Handy, N. C. (2001). A new parametrization of exchange–correlation generalized gradient approximation functionals. The Journal of Chemical Physics, 114(13), 5497-5503. doi:10.1063/1.1347371 | es_ES |
dc.description.references | Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a | es_ES |
dc.description.references | Schäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100(8), 5829-5835. doi:10.1063/1.467146 | es_ES |
dc.description.references | Eichkorn, K., Weigend, F., Treutler, O., & Ahlrichs, R. (1997). Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 97(1-4), 119-124. doi:10.1007/s002140050244 | es_ES |
dc.description.references | Weigend, F., Furche, F., & Ahlrichs, R. (2003). Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr. The Journal of Chemical Physics, 119(24), 12753-12762. doi:10.1063/1.1627293 | es_ES |
dc.description.references | Andrae, D., H�u�ermann, U., Dolg, M., Stoll, H., & Preu�, H. (1990). Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theoretica Chimica Acta, 77(2), 123-141. doi:10.1007/bf01114537 | es_ES |
dc.description.references | Borin, A. C., Serrano-Andrés, L., Ludwig, V., & Canuto, S. (2003). Theoretical absorption and emission spectra of 1H- and 2H-benzotriazole. Phys. Chem. Chem. Phys., 5(22), 5001-5009. doi:10.1039/b310702g | es_ES |
dc.description.references | Tomas, F., Catalan, J., Perez, P., & Elguero, J. (1994). Influence of Lone Pair Repulsion vs Resonance Energy on the Relative Stabilities of Molecular Structures: A Theoretical Approach to the Equilibrium between 1H- and 2H-Benzotriazole Tautomers. The Journal of Organic Chemistry, 59(10), 2799-2802. doi:10.1021/jo00089a026 | es_ES |
dc.description.references | SEYBOLD, P. G., GOUTERMAN, M., & CALLIS, J. (1969). CALORIMETRIC, PHOTOMETRIC AND LIFETIME DETERMINATIONS OF FLUORESCENCE YIELDS OF FLUORESCEIN DYES. Photochemistry and Photobiology, 9(3), 229-242. doi:10.1111/j.1751-1097.1969.tb07287.x | es_ES |
dc.description.references | Campagna, S., Puntoriero, F., Nastasi, F., Bergamini, G., & Balzani, V. (s. f.). Photochemistry and Photophysics of Coordination Compounds: Ruthenium. Topics in Current Chemistry, 117-214. doi:10.1007/128_2007_133 | es_ES |
dc.description.references | Blessing, R. H. (1995). An empirical correction for absorption anisotropy. Acta Crystallographica Section A Foundations of Crystallography, 51(1), 33-38. doi:10.1107/s0108767394005726 | es_ES |
dc.description.references | Spek, A. L. (2003). Single-crystal structure validation with the programPLATON. Journal of Applied Crystallography, 36(1), 7-13. doi:10.1107/s0021889802022112 | es_ES |