- -

Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII=Zn or Ru) featuring long-lived excited electronic states

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII=Zn or Ru) featuring long-lived excited electronic states

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Liu, Ying-Ya es_ES
dc.contributor.author Grzywa, Maciej es_ES
dc.contributor.author Tonigold, Markus es_ES
dc.contributor.author Sastre Navarro, German Ignacio es_ES
dc.contributor.author Schuettrigkeit, Tanja es_ES
dc.contributor.author Leeson, Nicholas S. es_ES
dc.contributor.author Volkmer, Dirk es_ES
dc.date.accessioned 2016-09-20T11:18:16Z
dc.date.available 2016-09-20T11:18:16Z
dc.date.issued 2011
dc.identifier.issn 1477-9226
dc.identifier.uri http://hdl.handle.net/10251/70151
dc.description.abstract The syntheses of Kuratowski-type pentanuclear clusters featuring {MZn4Cl4} cores (M-II = Ru or Zn) that incorporate triazolate ligands are described. The coordination compounds are characterized by single-crystal X-ray diffraction, X-ray powder diffraction (XRD), FTIR-and UV-vis spectroscopy. [(RuZn4Cl4)-Zn-II(Me(2)bta)(6)]center dot 2DMF (Me(2)bta(-) = 5,6-dimethyl-1,2,3-benzotriazolate) (1) crystallizes in the cubic system, while [Zn5Cl4(ta)(6)] (ta(-) = 1,2,3-triazolate) (3) crystallizes in the tetragonal system. Both compounds feature structurally similar cluster topologies in which the central octahedrally coordinated metal ion is coordinated to six triazolate ligands. Each triazolate ligand is coordinated with two zinc ions (mu(3)-bridging mode), leading altogether to a pentanuclear cluster of T-d point group symmetry. Photophysical investigations reveal that compound [Zn5Cl4(Me(2)bta)(6)]center dot 2DMF (2) shows a short-lived excited electronic state, which can be populated with high quantum yield. The isostructural compound [(RuZn4Cl4)-Zn-II(Me(2)bta)(6)]center dot 2DMF (1), on the other hand, shows a long-lived photoexcited state, owing to an internal singlet to triplet conversion of the electronic states, as revealed by time-resolved fluorescence spectroscopy. Insights gained from these studies open up novel design strategies towards photocatalytically active metal-organic frameworks incorporating photoactive Kuratowski-type secondary building units such as MFU-4 (Metal-Organic Framework Ulm University-4). es_ES
dc.description.sponsorship Financial support from the German Research Foundation (DFG Priority Program 1362 "Porous Metal-Organic Frameworks", VO 829/5-1) is gratefully acknowledged. M.T. is grateful to the Landesgraduiertenforderung Baden-Wurttemberg for financial support. GS thanks Ministerio de Ciencia e Innovacion of Spain for funding through project MAT2007-64682. BSC (Barcelona Supercomputing Centre) is thanked for providing computer resources. Helpful discussions with Dr Virginie Lhiaubet are gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Dalton Transactions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ZETA-VALENCE QUALITY es_ES
dc.subject GENERALIZED GRADIENT APPROXIMATION es_ES
dc.subject GAUSSIAN-BASIS SETS es_ES
dc.subject RUTHENIUM(II) COMPLEXES es_ES
dc.subject CORRELATION-ENERGY es_ES
dc.subject ADJUSTABLE-PARAMETERS es_ES
dc.subject TRINUCLEAR COMPLEXES es_ES
dc.subject CRYSTAL-STRUCTURE es_ES
dc.subject REDOX PROPERTIES es_ES
dc.subject D-ORBITALS es_ES
dc.title Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII=Zn or Ru) featuring long-lived excited electronic states es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c0dt01750g
dc.relation.projectID info:eu-repo/grantAgreement/DFG//VO 829%2F5-1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2007-64682/ES/ADSORCION Y CATALISIS EN SOLIDOS POROSOS METAL-ORGANICOS POR METODOS QUIMICO-COMPUTACIONALES/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Liu, Y.; Grzywa, M.; Tonigold, M.; Sastre Navarro, GI.; Schuettrigkeit, T.; Leeson, NS.; Volkmer, D. (2011). Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII=Zn or Ru) featuring long-lived excited electronic states. Dalton Transactions. 40(22):5926-5938. https://doi.org/10.1039/c0dt01750g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c0dt01750g es_ES
dc.description.upvformatpinicio 5926 es_ES
dc.description.upvformatpfin 5938 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 40 es_ES
dc.description.issue 22 es_ES
dc.relation.senia 217081 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder Baden-Württemberg Landesregierung es_ES
dc.description.references Shaw, R., Laye, R. H., Jones, L. F., Low, D. M., Talbot-Eeckelaers, C., Wei, Q., … McInnes, E. J. L. (2007). 1,2,3-Triazolate-Bridged Tetradecametallic Transition Metal Clusters [M14(L)6O6(OMe)18X6] (M = FeIII, CrIIIand VIII/IV) and Related Compounds:  Ground-State Spins Ranging fromS= 0 toS= 25 and Spin-Enhanced Magnetocaloric Effect. Inorganic Chemistry, 46(12), 4968-4978. doi:10.1021/ic070320k es_ES
dc.description.references Tekarli, S. M., Cundari, T. R., & Omary, M. A. (2008). Rational Design of Macrometallocyclic Trinuclear Complexes with Superior π-Acidity and π-Basicity. Journal of the American Chemical Society, 130(5), 1669-1675. doi:10.1021/ja076527u es_ES
dc.description.references Zhang, J.-P., Lin, Y.-Y., Huang, X.-C., & Chen, X.-M. (2005). Copper(I) 1,2,4-Triazolates and Related Complexes:  Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties. Journal of the American Chemical Society, 127(15), 5495-5506. doi:10.1021/ja042222t es_ES
dc.description.references Rocha, R. C., & Toma, H. E. (2003). Intervalence, electron transfer and redox properties of a triazolate-bridged ruthenium-polypyridine dinuclear complex. Polyhedron, 22(10), 1303-1313. doi:10.1016/s0277-5387(03)00105-0 es_ES
dc.description.references Rocha, R. C., Rein, F. N., Jude, H., Shreve, A. P., Concepcion, J. J., & Meyer, T. J. (2008). Observation of Three Intervalence-Transfer Bands for a Class II–III Mixed-Valence Complex of Ruthenium. Angewandte Chemie International Edition, 47(3), 503-506. doi:10.1002/anie.200702760 es_ES
dc.description.references Struthers, H., Spingler, B., Mindt, T. L., & Schibli, R. (2008). «Click‐to‐Chelate»: Design and Incorporation of Triazole‐Containing Metal‐Chelating Systems into Biomolecules of Diagnostic and Therapeutic Interest. Chemistry - A European Journal, 14(20), 6173-6183. doi:10.1002/chem.200702024 es_ES
dc.description.references Jernigan, F. E., Sieracki, N. A., Taylor, M. T., Jenkins, A. S., Engel, S. E., Rowe, B. W., … Ferrence, G. M. (2007). Sterically Bulky Tris(triazolyl)borate Ligands as Water-Soluble Analogues of Tris(pyrazolyl)borate. Inorganic Chemistry, 46(2), 360-362. doi:10.1021/ic061828a es_ES
dc.description.references Ferrer, S., Ballesteros, R., Sambartolomé, A., González, M., Alzuet, G., Borrás, J., & Liu, M. (2004). Syntheses, crystal structures, and oxidative DNA cleavage of some Cu(II) complexes of 5-amino-3-pyridin-2-yl-1,2,4-triazole. Journal of Inorganic Biochemistry, 98(8), 1436-1446. doi:10.1016/j.jinorgbio.2004.05.004 es_ES
dc.description.references Obata, M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J. A., Tanaka, R., … Yano, S. (2008). Syntheses, structural characterization and photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(i) complexes. Dalton Transactions, (25), 3292. doi:10.1039/b718538c es_ES
dc.description.references Schweinfurth, D., Pattacini, R., Strobel, S., & Sarkar, B. (2009). New 1,2,3-triazole ligands through click reactions and their palladium and platinum complexes. Dalton Transactions, (42), 9291. doi:10.1039/b910660j es_ES
dc.description.references Potts, K. T. (1961). The Chemistry of 1,2,4-Triazoles. Chemical Reviews, 61(2), 87-127. doi:10.1021/cr60210a001 es_ES
dc.description.references Richardson, C., & Steel, P. J. (2003). Benzotriazole as a structural component in chelating and bridging heterocyclic ligands; ruthenium, palladium, copper and silver complexes. Dalton Transactions, (5), 992-1000. doi:10.1039/b206990c es_ES
dc.description.references Rocha, R. C., & Toma, H. E. (2003). Transition Metal Chemistry, 28(1), 43-50. doi:10.1023/a:1022510505110 es_ES
dc.description.references Rocha, R. C., & Toma, H. E. (2000). Asymmetric mixed-valence binuclear ruthenium complexes containing benzotriazolate or benzimidazolate bridging ligands. Inorganica Chimica Acta, 310(1), 65-80. doi:10.1016/s0020-1693(00)00270-x es_ES
dc.description.references Rocha, R. C., & Toma, H. E. (2002). Benzotriazolate-bridged ruthenium dinuclear and trinuclear complexes. Polyhedron, 21(21), 2089-2098. doi:10.1016/s0277-5387(02)01135-x es_ES
dc.description.references Felici, M., Contreras-Carballada, P., Vida, Y., Smits, J. M. â M., Nolte, R. J. â M., Deâ Cola, L., … Feiters, M. (2009). IrIIIand RuIIComplexes Containing Triazole-Pyridine Ligands: Luminescence Enhancement upon Substitution with β-Cyclodextrin. Chemistry - A European Journal, 15(47), 13124-13134. doi:10.1002/chem.200901582 es_ES
dc.description.references Schulze, B., Friebe, C., Hager, M. D., Winter, A., Hoogenboom, R., Görls, H., & Schubert, U. S. (2009). 2,2′:6′,2″-Terpyridine meets 2,6-bis(1H-1,2,3-triazol-4-yl)pyridine: tuning the electro-optical properties of ruthenium(ii) complexes. Dalton Trans., (5), 787-794. doi:10.1039/b813925c es_ES
dc.description.references Biswas, S., Tonigold, M., Speldrich, M., Kögerler, P., Weil, M., & Volkmer, D. (2010). Syntheses and Magnetostructural Investigations on Kuratowski-Type Homo- and Heteropentanuclear Coordination Compounds [MZn4Cl4(L)6] (MII= Zn, Fe, Co, Ni, or Cu; L = 5,6-Dimethyl-1,2,3-benzotriazolate) Represented by the NonplanarK3,3Graph. Inorganic Chemistry, 49(16), 7424-7434. doi:10.1021/ic100749k es_ES
dc.description.references Biswas, S., Tonigold, M., & Volkmer, D. (2008). Homo- and Heteropentanuclear Coordination Compounds withTdSymmetry - the Solid State Structures of [MZn4(L)4(L′)6] (M = CoIIor Zn; L = chloride or acac; L′ = 1,2,3-benzotriazolate). Zeitschrift für anorganische und allgemeine Chemie, 634(14), 2532-2538. doi:10.1002/zaac.200800296 es_ES
dc.description.references Yuan, Y.-X., Wei, P.-J., Qin, W., Zhang, Y., Yao, J.-L., & Gu, R.-A. (2007). Combined Studies on the Surface Coordination Chemistry of Benzotriazole at the Copper Electrode by Direct Electrochemical Synthesis and Surface-Enhanced Raman Spectroscopy. European Journal of Inorganic Chemistry, 2007(31), 4980-4987. doi:10.1002/ejic.200700436 es_ES
dc.description.references Bai, Y., Tao, J., Huang, R., & Zheng, L. (2008). The Designed Assembly of Augmented Diamond Networks From Predetermined Pentanuclear Tetrahedral Units. Angewandte Chemie International Edition, 47(29), 5344-5347. doi:10.1002/anie.200800403 es_ES
dc.description.references Handley, J., Collison, D., Garner, C. D., Helliwell, M., Docherty, R., Lawson, J. R., & Tasker, P. A. (1993). Hexakis(benzotriazolato)tetrakis(2,4-pentanedionato)pentacopper(II): A Model for Corrosion Inhibition. Angewandte Chemie International Edition in English, 32(7), 1036-1038. doi:10.1002/anie.199310361 es_ES
dc.description.references Murrie, M., Collison, D., Garner, C. D., Helliwell, M., Tasker, P. A., & Turner, S. S. (1998). Synthesis structure magnetic properties of [Cu5(bta)6L4] (bta=benzotriazolate;L=β-diketonate) Clusters. Polyhedron, 17(17), 3031-3043. doi:10.1016/s0277-5387(98)00161-2 es_ES
dc.description.references Kokoszka, G. F., Baranowski, J., Goldstein, C., Orsini, J., Mighell, A. D., Himes, V. L., & Siedle, A. R. (1983). Two-dimensional dynamical Jahn-Teller effects in a mixed-valence benzotriazolato copper cluster, Cu5(BTA)6(RNC)4. Journal of the American Chemical Society, 105(17), 5627-5633. doi:10.1021/ja00355a017 es_ES
dc.description.references Biswas, S., Grzywa, M., Nayek, H. P., Dehnen, S., Senkovska, I., Kaskel, S., & Volkmer, D. (2009). A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. Dalton Transactions, (33), 6487. doi:10.1039/b904280f es_ES
dc.description.references Denysenko, D., Grzywa, M., Tonigold, M., Streppel, B., Krkljus, I., Hirscher, M., … Volkmer, D. (2011). Elucidating Gating Effects for Hydrogen Sorption in MFU-4-Type Triazolate-Based Metal-Organic Frameworks Featuring Different Pore Sizes. Chemistry - A European Journal, 17(6), 1837-1848. doi:10.1002/chem.201001872 es_ES
dc.description.references Kuratowski, C. (1930). Sur le problème des courbes gauches en Topologie. Fundamenta Mathematicae, 15, 271-283. doi:10.4064/fm-15-1-271-283 es_ES
dc.description.references Biswas, S., Tonigold, M., Speldrich, M., Kögerler, P., & Volkmer, D. (2009). Nonanuclear Coordination Compounds Featuring {M9L12}6+Cores (M = NiII, CoII, or ZnII; L = 1,2,3-Benzotriazolate). European Journal of Inorganic Chemistry, 2009(21), 3094-3101. doi:10.1002/ejic.200900156 es_ES
dc.description.references Biswas, S., Tonigold, M., Kelm, H., Krüger, H.-J., & Volkmer, D. (2010). Thermal spin-crossover in the [M3Zn6Cl6L12] (M = Zn, FeII; L = 5,6-dimethoxy-1,2,3-benzotriazolate) system: structural, electrochemical, Mössbauer, and UV-Vis spectroscopic studies. Dalton Transactions, 39(41), 9851. doi:10.1039/c0dt00556h es_ES
dc.description.references Wang, X.-L., Qin, C., Wu, S.-X., Shao, K.-Z., Lan, Y.-Q., Wang, S., … Wang, E.-B. (2009). Bottom-Up Synthesis of Porous Coordination Frameworks: Apical Substitution of a Pentanuclear Tetrahedral Precursor. Angewandte Chemie International Edition, 48(29), 5291-5295. doi:10.1002/anie.200902274 es_ES
dc.description.references Vlček, A., & Záliš, S. (2007). Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques. Coordination Chemistry Reviews, 251(3-4), 258-287. doi:10.1016/j.ccr.2006.05.021 es_ES
dc.description.references Evans, I. P., Spencer, A., & Wilkinson, G. (1973). Dichlorotetrakis(dimethyl sulphoxide)ruthenium(II) and its use as a source material for some new ruthenium(II) complexes. Journal of the Chemical Society, Dalton Transactions, (2), 204. doi:10.1039/dt9730000204 es_ES
dc.description.references Anzellotti, A., & Briceño, A. (2001). Hexakis(acetonitrile)ruthenium(II) tetrachlorozincate 2.55-hydrate. Acta Crystallographica Section E Structure Reports Online, 57(11), m538-m540. doi:10.1107/s1600536801017469 es_ES
dc.description.references Reisner, E., Arion, V. B., Rufińska, A., Chiorescu, I., Schmid, W. F., & Keppler, B. K. (2005). Isomeric [RuCl2(dmso)2(indazole)2] complexes: ruthenium(ii)-mediated coupling reaction of acetonitrile with 1H-indazole. Dalton Transactions, (14), 2355. doi:10.1039/b503650j es_ES
dc.description.references Duati, M., Tasca, S., Lynch, F. C., Bohlen, H., Vos, J. G., Stagni, S., & Ward, M. D. (2003). Enhancement of Luminescence Lifetimes of Mononuclear Ruthenium(II)−Terpyridine Complexes by Manipulation of the σ-Donor Strength of Ligands. Inorganic Chemistry, 42(25), 8377-8384. doi:10.1021/ic034691m es_ES
dc.description.references Stagni, S., Orselli, E., Palazzi, A., De Cola, L., Zacchini, S., Femoni, C., … Zanarini, S. (2007). Polypyridyl Ruthenium(II) Complexes with Tetrazolate-Based Chelating Ligands. Synthesis, Reactivity, and Electrochemical and Photophysical Properties. Inorganic Chemistry, 46(22), 9126-9138. doi:10.1021/ic7011556 es_ES
dc.description.references Giuffrida, G., Calogero, G., Guglielmo, G., Ricevuto, V., Ciano, M., & Campagna, S. (1993). Mono- and dinuclear complexes of ruthenium(II) and osmium(II) with a 3,5-bis(2-pyridyl)-1,2,4-triazole cyclohexyl-bridged spacer. Absorption spectra, luminescence properties, and electrochemical behavior. Inorganic Chemistry, 32(7), 1179-1183. doi:10.1021/ic00059a025 es_ES
dc.description.references Araki, K., Rein, F. N., Camera, S. G., & Toma, H. E. (1992). Spectroelectrochemical and kinetic behaviour of the [Ru(edta)-(diethyldithiocarbamate)] complex. Transition Metal Chemistry, 17(6), 535-538. doi:10.1007/bf02910752 es_ES
dc.description.references Alessio, E., Balducci, G., Lutman, A., Mestroni, G., Calligaris, M., & Attia, W. M. (1993). Synthesis and characterization of two new classes of ruthenium(III)-sulfoxide complexes with nitrogen donor ligands (L): Na[trans-RuCl4(R2SO)(L)] and mer, cis-RuCl3(R2SO)(R2SO)(L). The crystal structure of Na[trans-RuCl4(DMSO)(NH3)] · 2DMSO, Na[trans-RuCl4(DMSO)(Im)] · H2O, Me2CO (Im = imidazole) and mer, cis-RuCl3(DMSO)(DMSO)(NH3). Inorganica Chimica Acta, 203(2), 205-217. doi:10.1016/s0020-1693(00)81659-x es_ES
dc.description.references Ahlrichs, R., Bär, M., Häser, M., Horn, H., & Kölmel, C. (1989). Electronic structure calculations on workstation computers: The program system turbomole. Chemical Physics Letters, 162(3), 165-169. doi:10.1016/0009-2614(89)85118-8 es_ES
dc.description.references Thiel, W., & Voityuk, A. A. (1992). Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results. Theoretica Chimica Acta, 81(6), 391-404. doi:10.1007/bf01134863 es_ES
dc.description.references Thiel, W., & Voityuk, A. A. (1996). Extension of MNDO to d Orbitals:  Parameters and Results for the Second-Row Elements and for the Zinc Group. The Journal of Physical Chemistry, 100(2), 616-626. doi:10.1021/jp952148o es_ES
dc.description.references Becke, A. D. (1996). Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing. The Journal of Chemical Physics, 104(3), 1040-1046. doi:10.1063/1.470829 es_ES
dc.description.references Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785 es_ES
dc.description.references Perdew, J. P. (1986). Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B, 33(12), 8822-8824. doi:10.1103/physrevb.33.8822 es_ES
dc.description.references Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46(11), 6671-6687. doi:10.1103/physrevb.46.6671 es_ES
dc.description.references Hamprecht, F. A., Cohen, A. J., Tozer, D. J., & Handy, N. C. (1998). Development and assessment of new exchange-correlation functionals. The Journal of Chemical Physics, 109(15), 6264-6271. doi:10.1063/1.477267 es_ES
dc.description.references Wilson, P. J., Bradley, T. J., & Tozer, D. J. (2001). Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials. The Journal of Chemical Physics, 115(20), 9233-9242. doi:10.1063/1.1412605 es_ES
dc.description.references Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098-3100. doi:10.1103/physreva.38.3098 es_ES
dc.description.references Adamo, C., & Barone, V. (1998). Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. The Journal of Chemical Physics, 108(2), 664-675. doi:10.1063/1.475428 es_ES
dc.description.references Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522 es_ES
dc.description.references Schmider, H. L., & Becke, A. D. (1998). Optimized density functionals from the extended G2 test set. The Journal of Chemical Physics, 108(23), 9624-9631. doi:10.1063/1.476438 es_ES
dc.description.references Van Voorhis, T., & Scuseria, G. E. (1998). A novel form for the exchange-correlation energy functional. The Journal of Chemical Physics, 109(2), 400-410. doi:10.1063/1.476577 es_ES
dc.description.references Becke, A. D. (1993). A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics, 98(2), 1372-1377. doi:10.1063/1.464304 es_ES
dc.description.references Boese, A. D., & Handy, N. C. (2001). A new parametrization of exchange–correlation generalized gradient approximation functionals. The Journal of Chemical Physics, 114(13), 5497-5503. doi:10.1063/1.1347371 es_ES
dc.description.references Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a es_ES
dc.description.references Schäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100(8), 5829-5835. doi:10.1063/1.467146 es_ES
dc.description.references Eichkorn, K., Weigend, F., Treutler, O., & Ahlrichs, R. (1997). Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 97(1-4), 119-124. doi:10.1007/s002140050244 es_ES
dc.description.references Weigend, F., Furche, F., & Ahlrichs, R. (2003). Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr. The Journal of Chemical Physics, 119(24), 12753-12762. doi:10.1063/1.1627293 es_ES
dc.description.references Andrae, D., H�u�ermann, U., Dolg, M., Stoll, H., & Preu�, H. (1990). Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theoretica Chimica Acta, 77(2), 123-141. doi:10.1007/bf01114537 es_ES
dc.description.references Borin, A. C., Serrano-Andrés, L., Ludwig, V., & Canuto, S. (2003). Theoretical absorption and emission spectra of 1H- and 2H-benzotriazole. Phys. Chem. Chem. Phys., 5(22), 5001-5009. doi:10.1039/b310702g es_ES
dc.description.references Tomas, F., Catalan, J., Perez, P., & Elguero, J. (1994). Influence of Lone Pair Repulsion vs Resonance Energy on the Relative Stabilities of Molecular Structures: A Theoretical Approach to the Equilibrium between 1H- and 2H-Benzotriazole Tautomers. The Journal of Organic Chemistry, 59(10), 2799-2802. doi:10.1021/jo00089a026 es_ES
dc.description.references SEYBOLD, P. G., GOUTERMAN, M., & CALLIS, J. (1969). CALORIMETRIC, PHOTOMETRIC AND LIFETIME DETERMINATIONS OF FLUORESCENCE YIELDS OF FLUORESCEIN DYES. Photochemistry and Photobiology, 9(3), 229-242. doi:10.1111/j.1751-1097.1969.tb07287.x es_ES
dc.description.references Campagna, S., Puntoriero, F., Nastasi, F., Bergamini, G., & Balzani, V. (s. f.). Photochemistry and Photophysics of Coordination Compounds: Ruthenium. Topics in Current Chemistry, 117-214. doi:10.1007/128_2007_133 es_ES
dc.description.references Blessing, R. H. (1995). An empirical correction for absorption anisotropy. Acta Crystallographica Section A Foundations of Crystallography, 51(1), 33-38. doi:10.1107/s0108767394005726 es_ES
dc.description.references Spek, A. L. (2003). Single-crystal structure validation with the programPLATON. Journal of Applied Crystallography, 36(1), 7-13. doi:10.1107/s0021889802022112 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem