- -

Outstanding hydrogen permeation through CO2-stable dual phase ceramic membranes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Outstanding hydrogen permeation through CO2-stable dual phase ceramic membranes

Show simple item record

Files in this item

dc.contributor.author Escolástico Rozalén, Sonia es_ES
dc.contributor.author Solis Díaz, Cecilia es_ES
dc.contributor.author Kjolseth, C. es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2016-09-28T07:29:55Z
dc.date.available 2016-09-28T07:29:55Z
dc.date.issued 2014-11
dc.identifier.issn 1754-5692
dc.identifier.uri http://hdl.handle.net/10251/70543
dc.description.abstract [EN] Mixed electronic-and protonic-conducting composites made up of physical mixtures of La5.5WO11.25-delta-La0.87Sr0.13CrO3-delta (LWO-LSC) have been evaluated as H-2 separation membranes for operation at temperatures greater than 550 degrees C. The mixture of these two ion-conducting phases led to non-linear synergetic effects; i.e. unexpected enhancement of the total conductivity and well-balanced ambipolar conductivity, resulting in appealing H-2 permeation fluxes through robust ceramic membranes. The preparation, primary characterization, H-2 permeation and stability studies of various composites is presented. Mixing LWO and LSC phases makes it possible (1) to improve the LSC sintering behavior and to achieve very high membrane densities and (2) to obtain compounds with high total conductivity, higher than that shown for LWO and LSC, separately. The highest permeation rate is achieved for the 50 vol%-LWO-LSC membrane, though other composite compositions showed higher total conductivity. Moreover, the influence on the H-2 permeation of the composite composition, the humidification of gas streams, temperature and the use of various catalytic coatings on the membrane surface is evaluated. The nature of the transport mechanism is investigated by the permeation studies using deuterium tracers. The H-2 permeation rates reported in this investigation for a 370 mu m thick 50 vol%-LWO-LSC membrane, e.g. 0.15 mL min(-1) cm(-2) at 700 degrees C, are the highest reported values, up to date, for any bulk mixed protonic-electronic membranes. The H-2 permeation magnitude achieved at moderate temperatures along with the proven stability in CO2-rich atmospheres are firm steps towards the future application of this type of membrane for industrial processes. es_ES
dc.description.sponsorship Financial support by the Spanish government (ENE2011-24761, CSD-2009-0050, and SEV-2012-0267) and the Helmholtz Association of German Research Centers through the portfolio topic MEM-BRAIN is kindly acknowledged. Protia acknowledges financial support from the Research Council of Norway (RCN) under the Gassmaks program ICOR (201418). The authors are indebted to M. Fabuel for sample preparation. The support of the Servicio de Microscopia Electronica of the Universidad Politecnica de Valencia is also acknowledged.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation MICINN/ENE2011-24761 es_ES
dc.relation MICINN/CSD-2009-0050 es_ES
dc.relation RCN/201418 es_ES
dc.relation MICINN/SEV-2012-0267 es_ES
dc.relation.ispartof Energy and Environmental Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electron Microscopy Service of the UPV
dc.title Outstanding hydrogen permeation through CO2-stable dual phase ceramic membranes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C4EE02066A
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Escolástico Rozalén, S.; Solis Díaz, C.; Kjolseth, C.; Serra Alfaro, JM. (2014). Outstanding hydrogen permeation through CO2-stable dual phase ceramic membranes. Energy and Environmental Science. 2(11):3736-3746. doi:10.1039/C4EE02066A es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c4ee02066a es_ES
dc.description.upvformatpinicio 3736 es_ES
dc.description.upvformatpfin 3746 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 274196 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Research Council of Norway
dc.relation.references Shimura, T. (2001). Proton conduction in non-perovskite-type oxides at elevated temperatures. Solid State Ionics, 143(1), 117-123. doi:10.1016/s0167-2738(01)00839-6 es_ES
dc.relation.references HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004 es_ES
dc.relation.references Escolástico, S., Vert, V. B., & Serra, J. M. (2009). Preparation and Characterization of Nanocrystalline Mixed Proton−Electronic Conducting Materials Based on the System Ln6WO12. Chemistry of Materials, 21(14), 3079-3089. doi:10.1021/cm900067k es_ES
dc.relation.references Escolástico, S., Solís, C., & Serra, J. M. (2011). Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12. International Journal of Hydrogen Energy, 36(18), 11946-11954. doi:10.1016/j.ijhydene.2011.06.026 es_ES
dc.relation.references Jordal, K., Bredesen, R., Kvamsdal, H. M., & Bolland, O. (2004). Integration of H2-separating membrane technology in gas turbine processes for CO2 capture. Energy, 29(9-10), 1269-1278. doi:10.1016/j.energy.2004.03.086 es_ES
dc.relation.references Fontaine, M.-L., Larring, Y., Norby, T., Grande, T., & Bredesen, R. (2007). Dense ceramic membranes based on ion conducting oxides. Annales de Chimie Science des Matériaux, 32(2), 197-212. doi:10.3166/acsm.32.197-212 es_ES
dc.relation.references Escolástico, S., Solís, C., Scherb, T., Schumacher, G., & Serra, J. M. (2013). Hydrogen separation in La5.5WO11.25−δ membranes. Journal of Membrane Science, 444, 276-284. doi:10.1016/j.memsci.2013.05.005 es_ES
dc.relation.references Escolastico, S., Seeger, J., Roitsch, S., Ivanova, M., Meulenberg, W. A., & Serra, J. M. (2013). Enhanced H2Separation through Mixed Proton-Electron Conducting Membranes Based on La5.5W0.8M0.2O11.25−δ. ChemSusChem, 6(8), 1523-1532. doi:10.1002/cssc.201300091 es_ES
dc.relation.references Escolástico, S., Solís, C., & Serra, J. M. (2012). Study of hydrogen permeation in (La5/6Nd1/6)5.5WO12-δ membranes. Solid State Ionics, 216, 31-35. doi:10.1016/j.ssi.2011.11.004 es_ES
dc.relation.references Seeger, J., Ivanova, M. E., Meulenberg, W. A., Sebold, D., Stöver, D., Scherb, T., … Serra, J. M. (2013). Synthesis and Characterization of Nonsubstituted and Substituted Proton-Conducting La6–xWO12–y. Inorganic Chemistry, 52(18), 10375-10386. doi:10.1021/ic401104m es_ES
dc.relation.references Zhu, W. Z., & Deevi, S. C. (2003). Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering: A, 348(1-2), 227-243. doi:10.1016/s0921-5093(02)00736-0 es_ES
dc.relation.references Zhu, X., Zhong, Q., Zhao, X., & Yan, H. (2011). Synthesis and performance of Y-doped La0.7Sr0.3CrO3−δ as a potential anode material for solid oxygen fuel cells. Applied Surface Science, 257(6), 1967-1971. doi:10.1016/j.apsusc.2010.09.036 es_ES
dc.relation.references Khattak, C. P., & Cox, D. E. (1977). Structural studies of the (La, Sr) CrO3 system. Materials Research Bulletin, 12(5), 463-471. doi:10.1016/0025-5408(77)90111-8 es_ES
dc.relation.references Sujatha Devi, P., & Subba Rao, M. (1992). Preparation, structure, and properties of strontium-doped lanthanum chromites: La1−xSrxCrO3. Journal of Solid State Chemistry, 98(2), 237-244. doi:10.1016/s0022-4596(05)80231-2 es_ES
dc.relation.references Ding, X., Liu, Y., Gao, L., & Guo, L. (2006). Effects of cation substitution on thermal expansion and electrical properties of lanthanum chromites. Journal of Alloys and Compounds, 425(1-2), 318-322. doi:10.1016/j.jallcom.2006.01.030 es_ES
dc.relation.references Jiang, S. P., Liu, L., Ong, K. P., Wu, P., Li, J., & Pu, J. (2008). Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells. Journal of Power Sources, 176(1), 82-89. doi:10.1016/j.jpowsour.2007.10.053 es_ES
dc.relation.references Solís, C., Vert, V. B., Balaguer, M., Escolástico, S., Roitsch, S., & Serra, J. M. (2012). Mixed Proton-Electron Conducting Chromite Electrocatalysts as Anode Materials for LWO-Based Solid Oxide Fuel Cells. ChemSusChem, 5(11), 2155-2158. doi:10.1002/cssc.201200446 es_ES
dc.relation.references Larring, Y., Vigen, C., Ahouanto, F., Fontaine, M.-L., Peters, T., Smith, J. B., … Bredesen, R. (2012). Investigation of La1−xSrxCrO3−∂ (x ~ 0.1) as Membrane for Hydrogen Production. Membranes, 2(3), 665-686. doi:10.3390/membranes2030665 es_ES
dc.relation.references Vigen, C. K., & Haugsrud, R. (2014). Hydrogen flux in La0.87Sr0.13CrO3–δ. Journal of Membrane Science, 468, 317-323. doi:10.1016/j.memsci.2014.06.012 es_ES
dc.relation.references Balaguer, M., Solís, C., Bozza, F., Bonanos, N., & Serra, J. M. (2013). High performance anodes with tailored catalytic properties for La5.6WO11.4−δ based proton conducting fuel cells. Journal of Materials Chemistry A, 1(9), 3004. doi:10.1039/c3ta01554h es_ES
dc.relation.references Solís, C., Balaguer, M., Bozza, F., Bonanos, N., & Serra, J. M. (2014). Catalytic surface promotion of highly active La0.85Sr0.15Cr0.8Ni0.2O3−δ anodes for La5.6WO11.4−δ based proton conducting fuel cells. Applied Catalysis B: Environmental, 147, 203-207. doi:10.1016/j.apcatb.2013.08.044 es_ES
dc.relation.references Solís, C., Navarrete, L., Balaguer, M., & Serra, J. M. (2014). Development and understanding of La0.85Sr0.15Cr1−xNixO3−δ anodes for La5.6WO11.4−δ-based Proton Conducting Solid Oxide Fuel Cells. Journal of Power Sources, 258, 98-107. doi:10.1016/j.jpowsour.2014.02.015 es_ES
dc.relation.references Solís, C., Escolastico, S., Haugsrud, R., & Serra, J. M. (2011). La5.5WO12-δ Characterization of Transport Properties under Oxidizing Conditions: A Conductivity Relaxation Study. The Journal of Physical Chemistry C, 115(22), 11124-11131. doi:10.1021/jp2015066 es_ES
dc.relation.references Solís, C., Navarrete, L., Roitsch, S., & Serra, J. M. (2012). Electrochemical properties of composite fuel cell cathodes for La5.5WO12−δ proton conducting electrolytes. Journal of Materials Chemistry, 22(31), 16051. doi:10.1039/c2jm32061d es_ES
dc.relation.references Solís, C., Navarrete, L., & Serra, J. M. (2013). Study of Pr and Pr and Co doped La2NiO4+δ as cathodes for La5.5WO11.25−δ based protonic conducting fuel cells. Journal of Power Sources, 240, 691-697. doi:10.1016/j.jpowsour.2013.05.055 es_ES
dc.relation.references Lee, B. I., Gupta, R. K., & Whang, C. M. (2008). Effects of solvent and chelating agent on synthesis of solid oxide fuel cell perovskite, La0.8Sr0.2CrO3−δ. Materials Research Bulletin, 43(2), 207-221. doi:10.1016/j.materresbull.2007.10.007 es_ES
dc.relation.references Chick, L. A., Liu, J., Stevenson, J. W., Armstrong, T. R., McCready, D. E., Maupin, G. D., … Coyle, C. A. (2005). Phase Transitions and Transient Liquid-Phase Sintering in Calcium-Substituted Lanthanum Chromite. Journal of the American Ceramic Society, 80(8), 2109-2120. doi:10.1111/j.1151-2916.1997.tb03095.x es_ES
dc.relation.references FERGUS, J. (2004). Lanthanum chromite-based materials for solid oxide fuel cell interconnects. Solid State Ionics, 171(1-2), 1-15. doi:10.1016/j.ssi.2004.04.010 es_ES
dc.relation.references Peck, D. (1999). Phase diagram study in the CaO–Cr2O3–La2O3 system in air and under low oxygen pressure. Solid State Ionics, 123(1-4), 47-57. doi:10.1016/s0167-2738(99)00087-9 es_ES
dc.relation.references Dusastre, V., & Kilner, J. A. (1999). Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics, 126(1-2), 163-174. doi:10.1016/s0167-2738(99)00108-3 es_ES
dc.relation.references Haugsrud, R., & Kjølseth, C. (2008). Effects of protons and acceptor substitution on the electrical conductivity of La6WO12. Journal of Physics and Chemistry of Solids, 69(7), 1758-1765. doi:10.1016/j.jpcs.2008.01.002 es_ES
dc.relation.references Karim, D. P., & Aldred, A. T. (1979). Localized level hopping transport in La(Sr)CrO3. Physical Review B, 20(6), 2255-2263. doi:10.1103/physrevb.20.2255 es_ES
dc.relation.references Escolástico, S., Ivanova, M., Solís, C., Roitsch, S., Meulenberg, W. A., & Serra, J. M. (2012). Improvement of transport properties and hydrogen permeation of chemically-stable proton-conducting oxides based on the system BaZr1-x-yYxMyO3-δ. RSC Advances, 2(11), 4932. doi:10.1039/c2ra20214j es_ES
dc.relation.references Escolástico, S., Somacescu, S., & Serra, J. M. (2013). Solid State Transport and Hydrogen Permeation in the System Nd5.5W1–xRexO11.25−δ. Chemistry of Materials, 26(2), 982-992. doi:10.1021/cm402821w es_ES
dc.relation.references Matsumoto, H., Shimura, T., Iwahara, H., Higuchi, T., Yashiro, K., Kaimai, A., … Mizusaki, J. (2006). Hydrogen separation using proton-conducting perovskites. Journal of Alloys and Compounds, 408-412, 456-462. doi:10.1016/j.jallcom.2004.12.093 es_ES
dc.relation.references Chiesa, P., Romano, M. C., Spallina, V., Turi, D. M., & Mancuso, L. (2013). Efficient low CO2 emissions power generation by mixed conducting membranes. Energy Procedia, 37, 905-913. doi:10.1016/j.egypro.2013.05.185 es_ES
dc.relation.references Zhu, Z., Sun, W., Yan, L., Liu, W., & Liu, W. (2011). Synthesis and hydrogen permeation of Ni–Ba(Zr0.1Ce0.7Y0.2)O3−δ metal–ceramic asymmetric membranes. International Journal of Hydrogen Energy, 36(10), 6337-6342. doi:10.1016/j.ijhydene.2011.02.029 es_ES
dc.relation.references Wei, X., Kniep, J., & Lin, Y. S. (2009). Hydrogen permeation through terbium doped strontium cerate membranes enabled by presence of reducing gas in the downstream. Journal of Membrane Science, 345(1-2), 201-206. doi:10.1016/j.memsci.2009.08.041 es_ES
dc.relation.references Song, S. (2004). Hydrogen permeability of SrCe1−xMxO3−δ (x=0.05, M=Eu, Sm). Solid State Ionics, 167(1-2), 99-105. doi:10.1016/j.ssi.2003.12.010 es_ES
dc.relation.references Kniep, J., & Lin, Y. S. (2010). Effect of Zirconium Doping on Hydrogen Permeation through Strontium Cerate Membranes. Industrial & Engineering Chemistry Research, 49(6), 2768-2774. doi:10.1021/ie9015182 es_ES
dc.relation.references Mundschau, M. V., Xie, X., Evenson, C. R., & Sammells, A. F. (2006). Dense inorganic membranes for production of hydrogen from methane and coal with carbon dioxide sequestration. Catalysis Today, 118(1-2), 12-23. doi:10.1016/j.cattod.2006.01.042 es_ES
dc.relation.references Lu, G. Q., Diniz da Costa, J. C., Duke, M., Giessler, S., Socolow, R., Williams, R. H., & Kreutz, T. (2007). Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of Colloid and Interface Science, 314(2), 589-603. doi:10.1016/j.jcis.2007.05.067 es_ES
dc.relation.references Sato, K., Nishioka, M., Higashi, H., Inoue, T., Hasegawa, Y., Wakui, Y., … Hamakawa, S. (2012). Influence of CO2 and H2O on the separation of hydrogen over two types of Pd membranes: Thin metal membrane and pore-filling-type membrane. Journal of Membrane Science, 415-416, 85-92. doi:10.1016/j.memsci.2012.04.053 es_ES
dc.relation.references Ryu, K. H., & Haile, S. M. (1999). Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions. Solid State Ionics, 125(1-4), 355-367. doi:10.1016/s0167-2738(99)00196-4 es_ES
dc.relation.references SCHOLTEN, M., SCHOONMAN, J., VANMILTENBURG, J., & OONK, H. (1993). Synthesis of strontium and barium cerate and their reaction with carbon dioxide. Solid State Ionics, 61(1-3), 83-91. doi:10.1016/0167-2738(93)90338-4 es_ES


This item appears in the following Collection(s)

Show simple item record