- -

Abel's Functional Equation and Eigenvalues of Composition Operators on Spaces of Real Analytic Functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Abel's Functional Equation and Eigenvalues of Composition Operators on Spaces of Real Analytic Functions

Mostrar el registro completo del ítem

Bonet Solves, JA.; Domanski, P. (2015). Abel's Functional Equation and Eigenvalues of Composition Operators on Spaces of Real Analytic Functions. Integral Equations and Operator Theory. 81(4):455-482. https://doi.org/10.1007/s00020-014-2175-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/71248

Ficheros en el ítem

Metadatos del ítem

Título: Abel's Functional Equation and Eigenvalues of Composition Operators on Spaces of Real Analytic Functions
Autor: Bonet Solves, José Antonio Domanski, Pawel
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Fecha difusión:
Resumen:
We obtain full description of eigenvalues and eigenvectors of composition operators Cϕ : A (R) → A (R) for a real analytic self map ϕ : R → R as well as an isomorphic description of corresponding eigenspaces. We completely ...[+]
Palabras clave: Spaces of real analytic functions , Composition operator , Eigenvalues and eigenvectors , Spectrum , Abel's functional equation , Iteration semigroup , Iteration root
Derechos de uso: Reserva de todos los derechos
Fuente:
Integral Equations and Operator Theory. (issn: 0378-620X )
DOI: 10.1007/s00020-014-2175-4
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s00020-014-2175-4
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/
info:eu-repo/grantAgreement/MINECO//MTM2013-43540-P/ES/METODOS DEL ANALISIS FUNCIONAL Y TEORIA DE OPERADORES/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/
info:eu-repo/grantAgreement/NCN//N N201 605340/
Agradecimientos:
(1) The research of the authors was partially supported by MEC and FEDER Project MTM2010-15200 and MTM2013-43540-P and the work of Bonet also by GV Project Prometeo II/2013/013. The research of Domanski was supported by ...[+]
Tipo: Artículo

References

Abel, N.H.: Determination d’une function au moyen d’une equation qui ne contient qu’une seule variable. In: Oeuvres Complètes, vol. II, pp. 246-248. Christiania (1881)

Baker I.N.: Zusammensetzung ganzer Funktionen. Math. Z. 69, 121–163 (1958)

Baker I.N.: Permutable power series and regular iteration. J. Aust. Math. Soc. 2, 265–294 (1961) [+]
Abel, N.H.: Determination d’une function au moyen d’une equation qui ne contient qu’une seule variable. In: Oeuvres Complètes, vol. II, pp. 246-248. Christiania (1881)

Baker I.N.: Zusammensetzung ganzer Funktionen. Math. Z. 69, 121–163 (1958)

Baker I.N.: Permutable power series and regular iteration. J. Aust. Math. Soc. 2, 265–294 (1961)

Baker I.N.: Permutable entire functions. Math. Z. 79, 243–249 (1962)

Baker I.N.: Fractional iteration near a fixpoint of multiplier 1. J. Aust. Math. Soc. 4, 143–148 (1964)

Baker I.N.: Non-embeddable functions with a fixpoint of multiplier 1. Math. Z. 99, 337–384 (1967)

Baker I.N.: On a class of nonembeddable entire functions. J. Ramanujan Math. Soc. 3, 131–159 (1988)

Baron K., Jarczyk W.: Recent results on functional equations in a single variable, perspectives and open problems. Aequ. Math. 61, 1–48 (2001)

Belitskii G., Lyubich Y.: The Abel equation and total solvability of linear functional equations. Studia Math. 127, 81–97 (1998)

Belitskii G., Lyubich Yu.: The real analytic solutions of the Abel functional equation. Studia Math. 134, 135–141 (1999)

Belitskii G., Tkachenko V.: One-Dimensional Functional Equations. Springer, Basel (2003)

Belitskii G., Tkachenko V.: Functional equations in real analytic functions. Studia Math. 143, 153–174 (2000)

Bonet J., Domański P.: Power bounded composition operators on spaces of analytic functions. Collect. Math. 62, 69–83 (2011)

Bonet J., Domański P.: Hypercyclic composition operators on spaces of real analytic functions. Math. Proc. Camb. Philos. Soc. 153, 489–503 (2012)

Bracci, F., Poggi-Corradini, P.: On Valiron’s theorem. In: Proceedings of Future Trends in Geometric Function Theory. RNC Workshop Jyväskylä 2003, Rep. Univ. Jyväskylä Dept. Math. Stat., vol. 92, pp. 39–55 (2003)

Contreras, M.D.: Iteración de funciones analíticas en el disco unidad. Universidad de Sevilla (2009). (Preprint)

Contreras M.D., Díaz-Madrigal S., Pommerenke Ch.: Some remarks on the Abel equation in the unit disk. J. Lond. Math. Soc. 75(2), 623–634 (2007)

Cowen C.: Iteration and the solution of functional equations for functions analytic in the unit disc. Trans. Am. Math. Soc. 265, 69–95 (1981)

Cowen C.C., MacCluer B.D.: Composition operators on spaces of analytic functions. In: Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)

Domański, P.: Notes on real analytic functions and classical operators. In: Topics in Complex Analysis and Operator Theory (Winter School in Complex Analysis and Operator Theory, Valencia, February 2010). Contemporary Math., vol. 561, pp. 3–47. Am. Math. Soc., Providence (2012)

Domański P., Goliński M., Langenbruch M.: A note on composition operators on spaces of real analytic functions. Ann. Polon. Math. 103, 209–216 (2012)

P. Domański M. Langenbruch 2003 Language="En"Composition operators on spaces of real analytic functions Math. Nachr. 254–255, 68–86 (2003)

Domański P., Langenbruch M.: Coherent analytic sets and composition of real analytic functions. J. Reine Angew. Math. 582, 41–59 (2005)

Domański P., Langenbruch M.: Composition operators with closed image on spaces of real analytic functions. Bull. Lond. Math. Soc. 38, 636–646 (2006)

Domański P., Vogt D.: The space of real analytic functions has no basis. Studia Math. 142, 187–200 (2000)

Fuks D.B., Rokhlin V.A.: Beginner’s Course in Topology. Springer, Berlin (1984)

Greenberg M.J.: Lectures on Algebraic Topology. W. A. Benjamin Inc., Reading (1967)

Hammond, C.: On the norm of a composition operator, PhD. dissertation, Graduate Faculty of the University of Virginia (2003). http://oak.conncoll.edu/cnham/Thesis.pdf

Handt T., Kneser H.: Beispiele zur Iteration analytischer Funktionen. Mitt. Naturwiss. Ver. für Neuvorpommernund Rügen, Greifswald 57, 18–25 (1930)

Heinrich T., Meise R.: A support theorem for quasianalytic functionals. Math. Nachr. 280(4), 364–387 (2007)

Karlin S., McGregor J.: Embedding iterates of analytic functions with two fixed points into continuous group. Trans.Am. Math. Soc. 132, 137–145 (1968)

Kneser H.: Reelle analytische Lösungen der Gleichung $${\varphi(\varphi(x))=e^x}$$ φ ( φ ( x ) ) = e x und verwandter Funktionalgleichungen. J. Reine Angew. Math. 187, 56–67 (1949)

Königs, G.: Recherches sur les intégrales de certaines équations fonctionnelles. Ann. Sci. Ecole Norm. Sup. (3) 1, Supplément, 3–41 (1884)

Kuczma M.: Functional Equations in a Single Variable. PWN-Polish Scientific Publishers, Warszawa (1968)

Kuczma M., Choczewski B., Ger R.: Iterative Functional Equations. Cambridge University Press, Cambridge (1990)

Meise R., Vogt D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)

Milnor, J.: Dynamics in One Complex Variable. Vieweg, Braunschweig (2006)

Schröder E.: über iterierte Funktionen. Math. Ann. 3, 296–322 (1871)

Shapiro J.H.: Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics. Springer, New York (1993)

Shapiro, J.H.: Notes on the dynamics of linear operators. Lecture Notes. http://www.mth.msu.edu/~hapiro/Pubvit/Downloads/LinDynamics/LynDynamics.html

Shapiro, J.H.: Composition operators and Schröder functional equation. In: Studies on Composition Operators (Laramie, WY, 1996), Contemp. Math., vol. 213, pp. 213–228. Am. Math. Soc., Providence (1998)

Szekeres G.: Regular iteration of real and complex functions. Acta Math. 100, 203–258 (1958)

Szekeres G.: Fractional iteration of exponentially growing functions. J. Aust. Math. Soc. 2, 301–320 (1961)

Szekeres G.: Fractional iteration of entire and rational functions. J. Aust. Math. Soc. 4, 129–142 (1964)

Szekeres G.: Abel’s equations and regular growth: variations on a theme by Abel. Exp. Math. 7, 85–100 (1998)

Trappmann H., Kouznetsov D.: Uniqueness of holomorphic Abel function at a complex fixed point pair. Aequ. Math. 81, 65–76 (2011)

Viro, O.: 1-manifolds. Bull. Manifold Atlas. http://www.boma.mpim-bonn.mpg.de/articles/48 (a prolonged version also http://www.map.mpim-bonn.mpg.de/1-manifolds#Differential_structures )

Walker P.L.: A class of functional equations which have entire solutions. Bull. Aust. Math. Soc. 39, 351–356 (1988)

Walker P.L.: The exponential of iteration of e x −1. Proc. Am. Math. Soc. 110, 611–620 (1990)

Walker P.L.: On the solution of an Abelian functional equation. J. Math. Anal. Appl. 155, 93–110 (1991)

Walker P.L.: Infinitely differentiable generalized logarithmic and exponential functions. Math. Comp. 57, 723–733 (1991)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem