Mostrar el registro sencillo del ítem
dc.contributor.author | Grecova, Svetlana | es_ES |
dc.contributor.author | Sostak, Alexander | es_ES |
dc.contributor.author | Uljane, Ingrida | es_ES |
dc.date.accessioned | 2016-10-20T09:42:13Z | |
dc.date.available | 2016-10-20T09:42:13Z | |
dc.date.issued | 2016-10-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/72381 | |
dc.description.abstract | [EN] After the inception of the concept of a fuzzy metric by I. Kramosil and J. Michalek, and especially after its revision by A. George and G. Veeramani, the attention of many researches was attracted to the topology induced by a fuzzy metric. In most of the works devoted to this subject the resulting topology is an ordinary, that is a crisp one. Recently some researchers showed interest in the fuzzy-type topologies induced by fuzzy metrics. In particular, in the paper (J.J. Mi\~{n}ana, A. \v{S}ostak, {\it Fuzzifying topology induced by a strong fuzzy metric}, Fuzzy Sets and Systems, 6938 DOI information: 10.1016/j.fss.2015.11.005.) a fuzzifying topology ${\mathcal T}:2^X \to [0,1]$ induced by a fuzzy metric $m: X\times X \times [0,\infty)$ was constructed. In this paper we extend this construction to get the fuzzy topology ${\mathcal T}: [0,1]^X \to [0,1]$ and study some properties of this fuzzy topology.54A | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fuzzy pseudo metric | es_ES |
dc.subject | Fuzzy metric | es_ES |
dc.subject | Fuzzifying topology | es_ES |
dc.subject | Fuzzy topology | es_ES |
dc.subject | Lower semicontinuous functions | es_ES |
dc.subject | Lowen $\omega$-functor | es_ES |
dc.title | A construction of a fuzzy topology from a strong fuzzy metric | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2016-10-20T08:33:10Z | |
dc.identifier.doi | 10.4995/agt.2016.4495 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Grecova, S.; Sostak, A.; Uljane, I. (2016). A construction of a fuzzy topology from a strong fuzzy metric. Applied General Topology. 17(2):105-116. https://doi.org/10.4995/agt.2016.4495 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2016.4495 | es_ES |
dc.description.upvformatpinicio | 105 | es_ES |
dc.description.upvformatpfin | 116 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Chang, C. . (1968). Fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 24(1), 182-190. doi:10.1016/0022-247x(68)90057-7 | es_ES |
dc.description.references | Goguen, J. . (1967). L-fuzzy sets. Journal of Mathematical Analysis and Applications, 18(1), 145-174. doi:10.1016/0022-247x(67)90189-8 | es_ES |
dc.description.references | Goguen, J. . (1973). The fuzzy tychonoff theorem. Journal of Mathematical Analysis and Applications, 43(3), 734-742. doi:10.1016/0022-247x(73)90288-6 | es_ES |
dc.description.references | George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7 | es_ES |
dc.description.references | George, A., & Veeramani, P. (1997). On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, 90(3), 365-368. doi:10.1016/s0165-0114(96)00207-2 | es_ES |
dc.description.references | V. Gregori, A. López-Crevillén and S. Morillas, On continuity and uniform continuity in fuzzy metric spaces, Proc. Workshop Appl. Topology WiAT'09 (2009), 85-91. | es_ES |
dc.description.references | Gregori, V., López-Crevillén, A., Morillas, S., & Sapena, A. (2009). On convergence in fuzzy metric spaces. Topology and its Applications, 156(18), 3002-3006. doi:10.1016/j.topol.2008.12.043 | es_ES |
dc.description.references | V. Gregori and J. Mi-ana, Some concepts related to continuity in fuzzy metric spaces, Proc. Workshop Appl. Topology WiAT'13 (2013), 85-91. | es_ES |
dc.description.references | Gregori, V., Morillas, S., & Sapena, A. (2010). On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems, 161(16), 2193-2205. doi:10.1016/j.fss.2010.03.013 | es_ES |
dc.description.references | Gregori, V., & Romaguera, S. (2004). Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems, 144(3), 411-420. doi:10.1016/s0165-0114(03)00161-1 | es_ES |
dc.description.references | Höhle, U. (1980). Upper semicontinuous fuzzy sets and applications. Journal of Mathematical Analysis and Applications, 78(2), 659-673. doi:10.1016/0022-247x(80)90173-0 | es_ES |
dc.description.references | I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975), 336-344. | es_ES |
dc.description.references | Kubiak, T., & Sostak, A. P. (2004). A fuzzification of the category of M-valued L-topological spaces. Applied General Topology, 5(2), 137. doi:10.4995/agt.2004.1965 | es_ES |
dc.description.references | Lowen, R. (1976). Fuzzy topological spaces and fuzzy compactness. Journal of Mathematical Analysis and Applications, 56(3), 621-633. doi:10.1016/0022-247x(76)90029-9 | es_ES |
dc.description.references | Lowen, R. (1977). Initial and final fuzzy topologies and the fuzzy Tychonoff theorem. Journal of Mathematical Analysis and Applications, 58(1), 11-21. doi:10.1016/0022-247x(77)90223-2 | es_ES |
dc.description.references | Mardones-Pérez, I., & de Prada Vicente, M. A. (2015). Fuzzy pseudometric spaces vs fuzzifying structures. Fuzzy Sets and Systems, 267, 117-132. doi:10.1016/j.fss.2014.06.003 | es_ES |
dc.description.references | Mardones-Pérez, I., & de Prada Vicente, M. A. (2012). A representation theorem for fuzzy pseudometrics. Fuzzy Sets and Systems, 195, 90-99. doi:10.1016/j.fss.2011.11.008 | es_ES |
dc.description.references | Menger, K. (1951). Probabilistic Geometry. Proceedings of the National Academy of Sciences, 37(4), 226-229. doi:10.1073/pnas.37.4.226 | es_ES |
dc.description.references | Miheţ, D. (2007). On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets and Systems, 158(8), 915-921. doi:10.1016/j.fss.2006.11.012 | es_ES |
dc.description.references | Miñana, J.-J., & Šostak, A. (2016). Fuzzifying topology induced by a strong fuzzy metric. Fuzzy Sets and Systems, 300, 24-39. doi:10.1016/j.fss.2015.11.005 | es_ES |
dc.description.references | Sapena Piera, A. (2001). A contribution to the study of fuzzy metric spaces. Applied General Topology, 2(1), 63. doi:10.4995/agt.2001.3016 | es_ES |
dc.description.references | A. Sapena and S. Morillas, On strong fuzzy metrics, Proc. Workshop Appl. Topology WiAT'09 (2009), 135-141. | es_ES |
dc.description.references | Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematics, 10(1), 313-334. doi:10.2140/pjm.1960.10.313 | es_ES |
dc.description.references | A. Sostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo, Ser II 11 (1985), 125-186. | es_ES |
dc.description.references | Shostak, A. P. (1989). Two decades of fuzzy topology: basic ideas, notions, and results. Russian Mathematical Surveys, 44(6), 125-186. doi:10.1070/rm1989v044n06abeh002295 | es_ES |
dc.description.references | Šostak, A. P. (1996). Basic structures of fuzzy topology. Journal of Mathematical Sciences, 78(6), 662-701. doi:10.1007/bf02363065 | es_ES |
dc.description.references | Ying, M. (1991). A new approach for fuzzy topology (I). Fuzzy Sets and Systems, 39(3), 303-321. doi:10.1016/0165-0114(91)90100-5 | es_ES |
dc.description.references | Ying, M. (1992). A new approach for fuzzy topology (II). Fuzzy Sets and Systems, 47(2), 221-232. doi:10.1016/0165-0114(92)90181-3 | es_ES |
dc.description.references | Ying, M. (1993). A new approach for fuzzy topology (III). Fuzzy Sets and Systems, 55(2), 193-207. doi:10.1016/0165-0114(93)90132-2 | es_ES |
dc.description.references | Ying, M. (1993). Compactness in fuzzifying topology. Fuzzy Sets and Systems, 55(1), 79-92. doi:10.1016/0165-0114(93)90303-y | es_ES |
dc.description.references | Yue, Y., & Shi, F.-G. (2010). On fuzzy pseudo-metric spaces. Fuzzy Sets and Systems, 161(8), 1105-1116. doi:10.1016/j.fss.2009.10.001 | es_ES |