- -

Fundamental groups and Euler characteristics of sphere-like digital images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fundamental groups and Euler characteristics of sphere-like digital images

Mostrar el registro completo del ítem

Boxer, L.; Staecker, PC. (2016). Fundamental groups and Euler characteristics of sphere-like digital images. Applied General Topology. 17(2):139-158. https://doi.org/10.4995/agt.2016.4624

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/72386

Ficheros en el ítem

Metadatos del ítem

Título: Fundamental groups and Euler characteristics of sphere-like digital images
Autor: Boxer, Laurence Staecker, P. Christopher
Fecha difusión:
Resumen:
[EN] The current paper focuses on fundamental groups and Euler characteristics of various digital models of the 2-dimensional sphere. For all models that we consider, we show that the fundamental groups are trivial, and ...[+]
Palabras clave: Digital topology , Digital image , Fundamental group , Euler characteristic
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2016.4624
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2016.4624
Tipo: Artículo

References

Boxer, L. (1994). Digitally continuous functions. Pattern Recognition Letters, 15(8), 833-839. doi:10.1016/0167-8655(94)90012-4

Boxer, L. (2005). Properties of Digital Homotopy. Journal of Mathematical Imaging and Vision, 22(1), 19-26. doi:10.1007/s10851-005-4780-y

Boxer, L. (2006). Homotopy Properties of Sphere-Like Digital Images. Journal of Mathematical Imaging and Vision, 24(2), 167-175. doi:10.1007/s10851-005-3619-x [+]
Boxer, L. (1994). Digitally continuous functions. Pattern Recognition Letters, 15(8), 833-839. doi:10.1016/0167-8655(94)90012-4

Boxer, L. (2005). Properties of Digital Homotopy. Journal of Mathematical Imaging and Vision, 22(1), 19-26. doi:10.1007/s10851-005-4780-y

Boxer, L. (2006). Homotopy Properties of Sphere-Like Digital Images. Journal of Mathematical Imaging and Vision, 24(2), 167-175. doi:10.1007/s10851-005-3619-x

Boxer, L. (2006). Digital Products, Wedges, and Covering Spaces. Journal of Mathematical Imaging and Vision, 25(2), 159-171. doi:10.1007/s10851-006-9698-5

Boxer, L. (2010). Continuous Maps on Digital Simple Closed Curves. Applied Mathematics, 01(05), 377-386. doi:10.4236/am.2010.15050

Chen, L., & Zeng, T. (2014). A Convex Variational Model for Restoring Blurred Images with Large Rician Noise. Journal of Mathematical Imaging and Vision, 53(1), 92-111. doi:10.1007/s10851-014-0551-y

Han, S.-E. (2007). Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces. Information Sciences, 177(16), 3314-3326. doi:10.1016/j.ins.2006.12.013

Han, S.-E. (2008). Equivalent (k0,k1)-covering and generalized digital lifting. Information Sciences, 178(2), 550-561. doi:10.1016/j.ins.2007.02.004

Kong, T. Y. (1989). A digital fundamental group. Computers & Graphics, 13(2), 159-166. doi:10.1016/0097-8493(89)90058-7

Rosenfeld, A. (1979). Digital Topology. The American Mathematical Monthly, 86(8), 621. doi:10.2307/2321290

Rosenfeld, A. (1986). ‘Continuous’ functions on digital pictures. Pattern Recognition Letters, 4(3), 177-184. doi:10.1016/0167-8655(86)90017-6

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem