- -

Improvement of water transport mechanisms during potato drying by applying ultrasound

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improvement of water transport mechanisms during potato drying by applying ultrasound

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ozuna López, César es_ES
dc.contributor.author Cárcel Carrión, Juan Andrés es_ES
dc.contributor.author García Pérez, José Vicente es_ES
dc.contributor.author Mulet Pons, Antonio es_ES
dc.date.accessioned 2016-10-28T12:34:10Z
dc.date.available 2016-10-28T12:34:10Z
dc.date.issued 2011-11
dc.identifier.issn 0022-5142
dc.identifier.uri http://hdl.handle.net/10251/72947
dc.description.abstract Background: The drying rate of vegetables is limited by internal moisture diffusion and convective transport mechanisms. The increase of drying air temperature leads to faster water mobility; however, it provokes quality loss in the product and presents a higher energy demand. Therefore, the search for new strategies to improve water mobility during convective drying constitutes a topic of relevant research. The aim of this work was to evaluate the use of power ultrasound to improve convective drying of potato and quantify the influence of the applied power in the water transport mechanisms. Results: Drying kinetics of potato cubes were increased by the ultrasonic application. The influence of power ultrasound was dependent on the ultrasonic power (from 0 to 37 kW m -3), the higher the applied power, the faster the drying kinetic. The diffusion model considering external resistance to mass transfer provided a good fit of drying kinetics. From modelling, it was observed a proportional and significant (P < 0.05) influence of the applied ultrasonic power on the identified kinetic parameters: effective moisture diffusivity and mass transfer coefficient. Conclusions: The ultrasonic application during drying represents an interesting alternative to traditional convective drying by shortening drying time, which may involve an energy saving concerning industrial applications. In addition, the ultrasonic effect in the water transport is based on mechanical phenomena with a low heating capacity, which is highly relevant for drying heat sensitive materials and also for obtaining high-quality dry products. © 2011 Society of Chemical Industry. es_ES
dc.description.sponsorship The authors acknowledge the Ministerio de Ciencia e Innovacion for financial support from the project DPI2009-14549-C04-04. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of the Science of Food and Agriculture es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dehydration es_ES
dc.subject Diffusion es_ES
dc.subject Energy efficiency es_ES
dc.subject Modelling es_ES
dc.subject Solanum tuberosum es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Improvement of water transport mechanisms during potato drying by applying ultrasound es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jsfa.4344
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2009-14549-C04-04/ES/Estudio De Los Efectos De Los Ultrasonidos De Potencia En Procesos De Transferencia De Materia. Mejora De La Liofilizacion A Presion Atmosferica/ / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Ozuna López, C.; Carcel Carrión, JA.; García Pérez, JV.; Mulet Pons, A. (2011). Improvement of water transport mechanisms during potato drying by applying ultrasound. Journal of the Science of Food and Agriculture. 91(14):2511-2517. doi:10.1002/jsfa.4344 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1002/jsfa.4344 es_ES
dc.description.upvformatpinicio 2511 es_ES
dc.description.upvformatpfin 2517 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 91 es_ES
dc.description.issue 14 es_ES
dc.relation.senia 214231 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Ertekin, C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63(3), 349-359. doi:10.1016/j.jfoodeng.2003.08.007 es_ES
dc.description.references Hernández, J. A., Pavón, G., & Garcı́a, M. A. (2000). Analytical solution of mass transfer equation considering shrinkage for modeling food-drying kinetics. Journal of Food Engineering, 45(1), 1-10. doi:10.1016/s0260-8774(00)00033-9 es_ES
dc.description.references Simal, S., Femenia, A., Garcia-Pascual, P., & Rosselló, C. (2003). Simulation of the drying curves of a meat-based product: effect of the external resistance to mass transfer. Journal of Food Engineering, 58(2), 193-199. doi:10.1016/s0260-8774(02)00369-2 es_ES
dc.description.references Mulet, A., Blasco, M., García-Reverter, J., & García-Pérez, J. (2005). Drying Kinetics ofCurcuma longaRhizomes. Journal of Food Science, 70(5), E318-E323. doi:10.1111/j.1365-2621.2005.tb09971.x es_ES
dc.description.references De la Fuente-Blanco, S., Riera-Franco de Sarabia, E., Acosta-Aparicio, V. M., Blanco-Blanco, A., & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523-e527. doi:10.1016/j.ultras.2006.05.181 es_ES
dc.description.references García-Pérez, J. V., Cárcel, J. A., de la Fuente-Blanco, S., & Riera-Franco de Sarabia, E. (2006). Ultrasonic drying of foodstuff in a fluidized bed: Parametric study. Ultrasonics, 44, e539-e543. doi:10.1016/j.ultras.2006.06.059 es_ES
dc.description.references Cárcel, J. A., García-Pérez, J. V., Riera, E., & Mulet, A. (2007). Influence of High-Intensity Ultrasound on Drying Kinetics of Persimmon. Drying Technology, 25(1), 185-193. doi:10.1080/07373930601161070 es_ES
dc.description.references García-Pérez, J. V., Cárcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the Applied Acoustic Energy on the Drying of Carrots and Lemon Peel. Drying Technology, 27(2), 281-287. doi:10.1080/07373930802606428 es_ES
dc.description.references Gallego-Juarez, J. A. (2010). High-power ultrasonic processing: Recent developments and prospective advances. Physics Procedia, 3(1), 35-47. doi:10.1016/j.phpro.2010.01.006 es_ES
dc.description.references Mulet, A., Cárcel, J. A., Sanjuán, N., & Bon, J. (2003). New Food Drying Technologies - Use of Ultrasound. Food Science and Technology International, 9(3), 215-221. doi:10.1177/1082013203034641 es_ES
dc.description.references Gallego-Juarez, J. A., Rodriguez-Corral, G., Gálvez Moraleda, J. C., & Yang, T. S. (1999). A NEW HIGH-INTENSITY ULTRASONIC TECHNOLOGY FOR FOOD DEHYDRATION. Drying Technology, 17(3), 597-608. doi:10.1080/07373939908917555 es_ES
dc.description.references Gallego-Juárez, J. A., Rodriguez, G., Acosta, V., & Riera, E. (2010). Power ultrasonic transducers with extensive radiators for industrial processing. Ultrasonics Sonochemistry, 17(6), 953-964. doi:10.1016/j.ultsonch.2009.11.006 es_ES
dc.description.references DA-MOTA, V. M., & PALAU, E. (1999). ACOUSTIC DRYING OF ONION. Drying Technology, 17(4-5), 855-867. doi:10.1080/07373939908917574 es_ES
dc.description.references C. C. Huxsoll and C. W. Hall. (1970). Effects of Sonic Irradiation on Drying Rates of Wheat and Shelled Corn. Transactions of the ASAE, 13(1), 0021-0024. doi:10.13031/2013.38525 es_ES
dc.description.references Muralidhara, H. S., & Ensminger, D. (1986). ACOUSTIC DRYING OF GREEN RICE. Drying Technology, 4(1), 137-143. doi:10.1080/07373938608916315 es_ES
dc.description.references Ortuño C García-Pérez JV Cárcel JA Femenia A Mulet A Modelling of ultrasonically assisted convective drying of eggplant Proceedings of the 17th International Drying Symposium IDS 2010 2010 es_ES
dc.description.references Cárcel, J. A., Nogueira, R. I., García-Pérez, J. V., Sanjuán, N., & Riera, E. (2010). Ultrasound Effects on the Mass Transfer Processes during Drying Kinetic of Olive Leaves (Olea Europea, var. Serrana). Defect and Diffusion Forum, 297-301, 1083-1090. doi:10.4028/www.scientific.net/ddf.297-301.1083 es_ES
dc.description.references NAKAGAWA, S., YAMASHITA, T., & MIURA, H. (1996). Ultrasonic Drying of Walleye Pollack Surimi. NIPPON SHOKUHIN KAGAKU KOGAKU KAISHI, 43(4), 388-394. doi:10.3136/nskkk.43.388 es_ES
dc.description.references García-Pérez, J. V., Cárcel, J. A., Benedito, J., & Mulet, A. (2007). Power Ultrasound Mass Transfer Enhancement in Food Drying. Food and Bioproducts Processing, 85(3), 247-254. doi:10.1205/fbp07010 es_ES
dc.description.references McMinn, W. A. ., & Magee, T. R. . (2003). Thermodynamic properties of moisture sorption of potato. Journal of Food Engineering, 60(2), 157-165. doi:10.1016/s0260-8774(03)00036-0 es_ES
dc.description.references Garau, M. C., Simal, S., Femenia, A., & Rosselló, C. (2006). Drying of orange skin: drying kinetics modelling and functional properties. Journal of Food Engineering, 75(2), 288-295. doi:10.1016/j.jfoodeng.2005.04.017 es_ES
dc.description.references Ortuño, C., Pérez-Munuera, I., Puig, A., Riera, E., & Garcia-Perez, J. V. (2010). Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying. Physics Procedia, 3(1), 153-159. doi:10.1016/j.phpro.2010.01.022 es_ES
dc.description.references Chua, K. J., & Chou, S. K. (2005). A comparative study between intermittent microwave and infrared drying of bioproducts. International Journal of Food Science and Technology, 40(1), 23-39. doi:10.1111/j.1365-2621.2004.00903.x es_ES
dc.description.references Hebbar, H. U., Vishwanathan, K. ., & Ramesh, M. . (2004). Development of combined infrared and hot air dryer for vegetables. Journal of Food Engineering, 65(4), 557-563. doi:10.1016/j.jfoodeng.2004.02.020 es_ES
dc.description.references Mulet, A. (1994). Drying modelling and water diffusivity in carrots and potatoes. Journal of Food Engineering, 22(1-4), 329-348. doi:10.1016/0260-8774(94)90038-8 es_ES
dc.description.references Hassini, L., Azzouz, S., Peczalski, R., & Belghith, A. (2007). Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79(1), 47-56. doi:10.1016/j.jfoodeng.2006.01.025 es_ES
dc.description.references Zogzas, N. P., Maroulis, Z. B., & Marinos-Kouris, D. (1994). MOISTURE DEFFUSIVITY METHODS OF EXPERIMENTAL DETERMINATION AREVIEW. Drying Technology, 12(3), 483-515. doi:10.1080/07373939408959975 es_ES
dc.description.references Bon, J., Simal, S., Rosselló, C., & Mulet, A. (1997). Drying characteristics of hemispherical solids. Journal of Food Engineering, 34(2), 109-122. doi:10.1016/s0260-8774(97)00098-8 es_ES
dc.description.references Afzal, T. M., & Abe, T. (1998). Diffusion in potato during far infrared radiation drying. Journal of Food Engineering, 37(4), 353-365. doi:10.1016/s0260-8774(98)00111-3 es_ES
dc.description.references McMinn, W. A. M., Khraisheh, M. A. M., & Magee, T. R. A. (2003). Modelling the mass transfer during convective, microwave and combined microwave-convective drying of solid slabs and cylinders. Food Research International, 36(9-10), 977-983. doi:10.1016/s0963-9969(03)00118-2 es_ES
dc.description.references Gallego-Juárez, J. A., Riera, E., de la Fuente Blanco, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of High-Power Ultrasound for Dehydration of Vegetables: Processes and Devices. Drying Technology, 25(11), 1893-1901. doi:10.1080/07373930701677371 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem